Pressemitteilung

Spontanes Auftreten magnetischer Knoten entdeckt

Seit ihrer experimentellen Entdeckung sind magnetische Skyrmionen – winzige magnetische Knoten – in den Fokus der Forschung gerückt. Wissenschaftlerinnen und Wissenschaftler aus Hamburg und Kiel konnten nun zeigen, dass sich einzelne magnetische Skyrmionen mit einem Durchmesser von nur wenigen Nanometern in magnetischen Metallfilmen auch ohne ein äußeres Magnetfeld stabilisieren lassen. Über ihre Entdeckung berichten sie in der Fachzeitschrift Nature Communications. 

Die Existenz magnetischer Skyrmionen als teilchenartige Objekte ist bereits vor 30 Jahren von theoretischen Physikern vorhergesagt worden, konnte aber erst 2013 experimentell nachgewiesen werden. Skyrmionen mit einem Durchmesser von Mikrometern (10-6 Meter) bis zu wenigen Nanometern (10-9 Meter) wurden in unterschiedlichen magnetischen Materialsystemen entdeckt. Obwohl sie auf einer Fläche von wenigen Atomen erzeugt und mit elektrischen Strömen manipuliert werden können, zeigen sie eine hohe Stabilität gegenüber äußeren Einflüssen. Das macht sie zu vielversprechenden Kandidaten für zukünftige Datenspeicher oder Logik-Bauelemente. Um für technologische Anwendungen konkurrenzfähig zu sein, müssen Skyrmionen allerdings nicht nur sehr klein, sondern auch ohne ein angelegtes Magnetfeld stabil sein.
Einen wichtigen Schritt in diese Richtung haben nun Forschende der Universitäten Hamburg und Kiel gemacht. Ausgehend von quantenmechanischen numerischen Rechnungen, die auf den Supercomputern des Norddeutschen Verbundes für Hoch- und Höchstleistungsrechnen (HLRN) durchgeführt worden sind, konnten die Kieler Physikerinnern und Physiker vorhersagen, dass in einem atomar dünnen, ferromagnetischen Kobaltfilm einzelne Skyrmionen mit einem Durchmesser von nur wenigen Nanometern auftauchen sollten (s. Abb. 1). „Die Stabilität der magnetischen Knoten in diesen Filmen beruht auf einer ungewöhnlichen Konkurrenz magnetischer Wechselwirkungen“, so Sebastian Meyer, Doktorand in der Arbeitsgruppe von Prof. Stefan Heinze an der Christian-Albrechts-Universität zu Kiel.
Diese Vorhersage wurde von Hamburger Forschenden um Dr. Kirsten von Bergmann mittels hochauflösender Rastertunnelmikroskopie anschließend bestätigt. Die Tieftemperatur-Messungen von Marco Perini, Doktorand in der Arbeitsgruppe von Prof. Dr. Roland Wiesendanger, zeigen in den präparierten Kobaltfilmen magnetische Skyrmionen, ohne dass ein externes Magnetfeld angelegt werden musste (s. Abb. 2). „Bislang wurden einzelne Skyrmionen fast immer durch Magnetfelder erzeugt. In unseren Metallfilmen treten die Skyrmionen dagegen spontan auf“, erläutert Kirsten von Bergmann. „Für zukünftige Anwendungen in der Spinelektronik müssen die Skyrmionen aber nicht nur bei extrem tiefen Temperaturen stabil sein, wie in den untersuchten Metallfilmen, sondern auch bei Umgebungstemperatur. Um diesen nächsten Schritt in Richtung Anwendung zu realisieren, kann die hier gefundene Konkurrenz der magnetischen Wechselwirkung einen großen Beitrag leisten.“

Abb. 1: Illustration eines magnetischen Skyrmions mit einem Durchmesser von nur wenigen Nanometern in einem atomar dünnen Kobaltfilm. Die kleinen farbigen Kegel stehen für die „atomaren Stabmagneten“ eines jeden Kobaltatoms. Der ferromagnetische Hintergrund ist an den parallel nach oben ausgerichteten blauen Kegeln zu erkennen. Innerhalb des Skyrmions drehen sich die „atomaren Stabmagnete“ der Kobaltatome schrittweise (grüne, gelbe und orangene Kegel), bis sie im Zentrum entgegen dem ferromagnetischen Hintergrund ausgerichtet sind (rote Kegel). Copyright: S. Meyer, CAU Kiel.

Abb. 2: Rastertunnelmikroskopie-Messung der Probenoberfläche, ein magnetisches Skyrmion ist hier als goldener Ring zu erkennen. Die ferromagnetische Ausrichtung im Kobaltfilm außerhalb des Skyrmions ist blau eingefärbt, das Zentrum des Skyrmions ist hier ebenfalls blau. Diese dreidimensionale Ansicht zeigt in weiß eine atomare Stufenkante (unten links) und eine atomar hohe Insel (rechts oben). Der Balken unten links im Bild hat eine Länge von fünf Nanometern. Copyright: A. Kubetzka, Universität Hamburg.


 

Original Publikation:

S. Meyer, M. Perini, S. von Malottki, A. Kubetzka, R. Wiesendanger, K. von Bergmann, and S. Heinze, 
Isolated zero field sub-10 nm skyrmions in ultrathin Co films
Nature Communications, 23.08.2019 (2019).
DOI: 10.1038/s41467-019-11831-4

 

Weitere Informationen:

Professor Dr. Stefan Heinze
Institut für Theoretische Physik und Astrophysik
Christian-Albrechts-Universität zu Kiel
Telefon: 0431 / 880-4127
E-Mail: heinze@theo-physik.uni-kiel.de 
Web: www.itap.uni-kiel.de/theo-physik/heinze

Dr. Kirsten von Bergmann
Fachbereich Physik
Universität Hamburg
Telefon: 040 / 42838-6295
E-Mail: kbergman@physnet.uni-hamburg.de
Web: https://hp.physnet.uni-hamburg.de/kbergman/

 

 

 
Imprint