News

Logik mit Atomen: das kleinste "Oder" der Welt

05.05.2010

Wissenschaftler der Universität Hamburg konnten erstmals ein funktionierendes Spintronik-Logik-Bauteil verwirklichen, das aus wenigen magnetischen Atomen aufgebaut ist. Wie die renommierte Zeitschrift "Science" in der Ausgabe vom 5. Mai 2011 berichtet, ist beim Schalten des realisierten logischen Oder-Gatters im Gegensatz zu herkömmlichen elektronischen Bauteilen kein Stromfluss nötig, da nur die magnetische Ausrichtung der Atome umgeschaltet wird. Dieser spektakuläre Durchbruch im Bereich der Nano-Spintronik zeigt auf, wie zukünftige Computerbausteine aussehen könnten: Atomar klein, bis zu 10.000 Gigahertz schnell und das fast ohne Stromverbrauch!

Jeder Besitzer eines mobilen Computers kennt das Problem: Den leistungsfähigen Geräten geht oft viel zu schnell die Puste aus, da der Akku wie von Zauberhand schon wieder leer ist. Gerade aktuelle Smartphones sind davon betroffen, denn diese halten oft nur einen Arbeitstag durch, bevor sie wieder dringend an die Steckdose müssen. Schuld daran sind die hellen Displays und die herkömmliche Halbleiter-Elektronik, die zur Datenverarbeitung die elektrische Ladung nutzt. Da die Miniaturisierung von Halbleiter-Bauelementen bald an ihre Grenze stößt, wird schon lange nach einem neuen Konzept für Logik-Bauteile auf kleinstmöglicher Skala gesucht. Einen viel versprechenden Ansatz bietet die Spintronik. In dieser Technologie wird nicht nur die Ladung der Elektronen genutzt, sondern auch deren "Spin". Dieser Elektronen-Spin ist eine quantenmechanische Eigenschaft und kann vereinfacht als Drehung der Elektronen um ihre eigene Achse verstanden werden. Diese Drehung erzeugt ein magnetisches Moment und daher kann man ein einzelnes Elektron stark vereinfacht als winzige Kompassnadel ansehen, die, je nachdem wie herum sich das Elektron dreht, nach Norden oder Süden zeigt. Um das völlig neuartige Nano-Spintronik-Bauteil zu verwirklichen, brachten die Hamburger Physiker um Dr. Alexander Khajetoorians und Dr. Jens Wiebe, aus der Forschergruppe von Prof. Roland Wiesendanger, Kobalt auf eine Kupferoberfläche auf. Dabei entstanden dreieckige Inseln, die aus ca. 100 Kobalt-Atomen bestehen. Anschließend benutzten die Wissenschaftler die atomar scharfe Nadel eines sogenannten Rastertunnelmikroskops als Werkzeug, um zwei der Kobalt-Inseln mit Ketten aus einzelnen Eisen-Atomen zu verbinden (siehe Abb. 1 und Animation unten). Wichtig war dabei, dass die Eisen-Atome in definierten Abständen zueinander und zu den Kobalt-Inseln auf der Kupferoberfläche angeordnet wurden.

Abb. 1: Die Abbildung zeigt den Aufbau des kleinsten Nano-Spintronik-Logikgatters der Welt. Die dreieckigen Strukturen sind magnetische Kobalt-Inseln mit einer Höhe von zwei Atomlagen und die gelben Kugeln symbolisieren einzelne Eisen-Atome. Die roten und grünen Pfeile zeigen die magnetische Ausrichtung an. Die Größe des eigentlichen logischen Gatters aus drei Eisen-Atomen beträgt ca. 3 Nanometer.

Die beiden Kobalt-Inseln sind die Eingabe-Einheiten für die zu verarbeitenden magnetischen Informationen. In der Mitte des Spintronik-Bauteils, dort wo die beiden Ketten auf einander treffen, liegt ein einzelnes Eisen-Atom, das als Ausgabe-Einheit dient und in Abhängigkeit von der Eingabe über die Kobalt-Inseln logisch geschaltet wird. Der magnetische Zustand des Ausgabe-Atoms wird mit Hilfe der spinsensitiven Nadel des Rastertunnelmikroskops ausgelesen, die dafür mit einem magnetischen Material beschichtet wurde. Durch die definierten Abstände der Eisen-Atome zueinander und zu den Kobaltinseln nehmen die Spins der Atome einen anti-parallelen Zustand ein, d.h. die winzigen Kompassnadeln zeigen von Atom zu Atom in entgegen gesetzte Richtungen.

Ändert man nun die magnetische Ausrichtung der beiden Eingabe-Inseln, dann richten sich die Spins der Eisen-Atome auch wieder anti-parallel zu den Inseln aus und ähnlich wie bei einem Dominospiel kippen die Kompassnadeln nacheinander um und passen sich der neuen Eingabe an. Das Ausgabe-Atom wird dabei logisch geschaltet (siehe Abb. 2). Wie die Hamburger Wissenschaftler in einer früheren Arbeit bereits festgestellt hatten, erfolgt der Umschaltprozess eines der Spins in einer extrem kurzen Zeit von einem Zehnbillionstel einer Sekunde, was extrem schnelle Schaltfrequenzen der neuartigen Bauteile erwarten lässt (siehe A. A. Khajetoorians et al., Phys. Rev. Lett. 106, 037205 (2011)).

 

Abb. 2: Bilder des Nano-Spintronik-Logikgatters, das mit der Nadel eines spinsensitiven Rastertunnelmikroskops ausgelesen wurde. Es handelt sich bei dem Bauteil um ein "Oder-Gatter", d. h. zeigt der Spin von beiden Eingabe-Inseln nach unten (D), dann zeigt auch der Spin des Ausgabe-Atoms nach unten (blau). Zeigen die Spins einer oder beider Inseln nach oben (A-C), so wird auch der Spin des Ausgabe-Atoms nach oben ausgerichtet (rot).


Mit ihrer Arbeit konnten die Hamburger Forscher weltweit erstmalig die Vorteile der Nano-Spintronik auf atomarer Skala experimentell demonstrieren:

  • Höhere Energieeffizienz: Da für das Schalten der Nano-Spintronik-Bauteile kein elektrischer Strom benötigt wird, verbrauchen diese Bauteile erheblich weniger Energie als herkömmliche Halbleiterbauteile. Leistungsfähige Mobil-Geräte, die wochenlang nicht aufgeladen werden müssen, sind damit vorstellbar. Angesichts der globalen Verknappung von Energieressourcen stellt die Steigerung der Energieeffizienz von Computer-Prozessoren eine der wesentlichen Herausforderungen des Informationszeitalters dar.
  • Schnellere Bauteile: Deutlich höhere Taktfrequenzen machen heutigen Halbleiter-Systemen stark zu schaffen, da durch den Ladungstransport bei höheren Frequenzen mehr Abwärme produziert wird, die nicht nur zu einem hohen Energieverlust führt, sondern den Halbleiterschaltkreis auch zerstören kann. Da in dem von den Hamburger Forschern konzipierten Nano-Spintronik-Bauteil keine Ladung transportiert wird, gibt es keine thermischen Probleme und so sind Taktfrequenzen bis 10.000 Gigahertz vorstellbar.           
  • Kleinere Bauteile: Da Nano-Spintronik-Bauteile nach Art der hier demonstrierten logischen Gatter aus wenigen Atomen aufgebaut werden können, sind sowohl deutlich kleinere als auch komplexere Bauteile möglich als mit der herkömmlichen Halbleiter-Technologie. 

  • Nichtflüchtiger Speicher: Die Verwendung des Spins als Übermittler der Information hat einen weiteren Vorteil. Es bleiben alle Informationen auch nach dem Ausschalten eines Bauteils erhalten, da diese magnetisch und nicht elektronisch gespeichert sind. Das würde beim Starten eines Spintronik-Computers den langwierigen Bootvorgang überflüssig machen, das System würde einfach weiter machen, als wäre es nie ausgeschaltet worden. Außerdem sind neuartige Hybrid-Bauteile vorstellbar, die Speicher- und Rechenkomponenten enthalten.

 

Download Video: MP4, WebM, Ogg
HTML5 Video Player by VideoJS

Animation: A. A. Khajetoorians

 

Original-Veröffentlichung:

Realizing All-Spin Based Logic Operations Atom by Atom,
A. A. Khajetoorians, J. Wiebe, B. Chilian, and R. Wiesendanger,
Science 332 (6033): 1062-1064 (2011).
(DOI: 10.1126/science.1201725
)



Molecular magnets swirl together

Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice
J. Brede, N. Atodiresei, V. Caciuc, M. Bazarnik, A. Al-Zubi, S. Blügel, and R. Wiesendanger,
Nature Nanotechology (2014).

2014 brede READMORE

Surprisingly high transition temperature in a pure rare earth superconductor

Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit
P. Löptien, L. Zhou, A. A. Khajetoorians, J. Wiebe, and R. Wiesendanger,
J. Phys.: Condens. Matter 26 (2014) 425703.


2014-10-06
READMORE

Inaugural international Heinrich Rohrer Prize goes to Professor Roland Wiesendanger




12. june 2014





More information




2014-06-13
READMORE

Enhanced Atomic-Scale Spin Contrast due to Spin Friction


Enhanced Atomic-Scale Spin Contrast due to Spin Friction

S. Ouazi, A. Kubetzka, K. von Bergmann, and
R. Wiesendanger,

Phys. Rev. Lett. 112 076102 (2014)

2014 04 07 READMORE

Parity Effects in 120° Spin Spirals


Parity effects in 120° spin spirals

M. Menzel, A. Kubetzka, K. von Bergmann, and
R. Wiesendanger,

Phys. Rev. Lett.
112, 047204 (2014).
2014-04-15
READMORE

Dr. Alexander Ako Khajetoorians wins the Nicholas Kurti European Science Prize 2014



26. february 2014




More information


2014 02 26







READMORE

Topologically stable magnetic Helix: theoretical Concept of a novel Technique for Information Transfer and Energy Storage

Topologically Protected Magnetic Helix for All-Spin-Based Applications
E. Y. Vedmedenko and D. Altwein,
Phys. Rev. Lett. 112, 017206 (2014).

2014 02 19

READMORE

New technology for energy-efficient data storage

Electric-Field-Induced Magnetic Anisotropy in a Nanomagnet Investigated on the Atomic Scale
A. Sonntag, J. Hermenau, A. Schlenhoff, J. Friedlein, S. Krause, and R. Wiesendanger,
Phys. Rev. Lett. 112, 017204 (2014).

2014 01 09
READMORE

Sonderforschungsbereich zum dritten Mal erfolgreich: Weitere 10 Millionen Euro für Erforschung des Magnetismus im Nanokosmos

 

 

 

 

PM 2013-11-21

  READMORE

5. Nacht des Wissens in Hamburg

02. November 2013
Jungiusstraße 11, 20355 Hamburg


View Slideshow


2013-11-02 NDW

READMORE

On the cover of "Science": Magnetic nano-knots for data storage

Researchers use skyrmions to store information

Writing and Deleting Single Magnetic Skyrmions,
N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger,
Science (2013)

PM 2013-08-08 gross.


READMORE

The world’s smallest magnet

Current-Driven Spin Dynamics of Artificially Constructed Quantum Magnets
A. A. Khajetoorians, B. Baxevanis, C. Hübner, T. Schlenk, S. Krause, T. O. Wehling, S. Lounis, A. Lichtenstein, D. Pfannkuche, J. Wiebe, and R. Wiesendanger,
Science 339 no. 6115 pp. 55-59 (2013).
PM 2013-01-04 news
READMORE

New technique for imaging and manipulating tiny magnets

Individual Atomic-Scale Magnets Interacting with Spin-Polarized Field-Emitted Electrons,
A. Schlenhoff, S. Krause, A. Sonntag, and R. Wiesendanger,
Phys. Rev. Lett. 109 097602 (2012).

PM 2012-08-29

READMORE

Direct imaging of magnetic molecular orbitals succeeded

Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets,
J. Schwöbel, Y. Fu, J. Brede, A. Dilullo, G. Hoffmann, S. Klyatskaya, M. Ruben, and R. Wiesendanger,
Nature Communications 3 953 (2012).

2012 08 02 gross

READMORE

Spin spirals for energy-efficient computer systems

Information Transfer by Vector Spin Chirality in Finite Magnetic Chains,
M. Menzel, Y. Mokrousov, R. Wieser, J.E. Bickel, E. Vedmedenko, S. Blügel, S. Heinze, K. von Bergmann, A. Kubetzka, and R. Wiesendanger,
Physical Review Letters 108, 197204 (2012)

READMORE

LEGO with atomic magnets

Atom-by-atom engineering and magnetometry of tailored nanomagnets,
A. A. Khajetoorians, J. Wiebe, B. Chilian, S. Lounis, S. Blügel, and R. Wiesendanger,
Nature Physics 8, 497–503 (2012).

READMORE

A thermometer for the nanoworld

Joule Heating and Spin-Transfer Torque Investigated on the Atomic Scale Using a Spin-Polarized Scanning Tunneling Microscope,
S. Krause, G. Herzog, A. Schlenhoff, A. Sonntag, and R. Wiesendanger,
Phys. Rev. Lett 107, 186601 (2011).

READMORE

Lattice of magnetic vortices

Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,
S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A.  Kubetzka, R. Wiesendanger, G. Bihlmayer, S. Blügel,
Nature Physics 7, 713–718 (2011).

READMORE

Logic with atoms: the smallest OR of the world

Realizing All-Spin Based Logic Operations Atom by Atom,
A. A. Khajetoorians, J. Wiebe, B. Chilian, and R. Wiesendanger,
Science 332 (6033): 1062-1064 (2011).

READMORE

Electrical contact with a bit of the quantum world

Detecting excitation and magnetization of individual dopants in a semiconductor,
A. A. Khajetoorians, B. Chilian, J. Wiebe, S. Schuwalow, F. Lechermann, and R. Wiesendanger,
Nature 467, 1084–1087 (2010).

READMORE

Imaging and manipulation of atomic spins

Imaging and Manipulating the Spin Direction of Individual Atoms
D. Serrate, P. Ferriani, Y. Yoshida, S.-W. Hla, M. Menzel, K. von Bergmann, S. Heinze, A. Kubetzka, and R. Wiesendanger,
Nature Nanotechnology 5, 350 - 353 (2010).

READMORE

How conduction electrons mediate between atomic bits

Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interaction mapped on the atomic scale,
L. Zhou, J. Wiebe, S. Lounis, E. Vedmedenko, F. Meier, S. Blügel, P. H. Dederichs, and R. Wiesendanger,
Nature Physics 6, 187 - 191 (2010).

READMORE

La-Ola in nanomagnets

Magnetization Reversal of Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor,
S. Krause, G. Herzog, T. Stapelfeldt, L. Berbil-Bautista, M. Bode, E.Y. Vedmedenko, and R. Wiesendanger,
PRL 103, 127202 (2009).

READMORE

Atomic bits in sight

Revealing magnetic interactions from single-atom magnetization curves,
F. Meier, L. Zhou, J. Wiebe, and R. Wiesendanger,
Science 320, 82-86 (2008).

 

READMORE

Movement in the nanoworld

Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes,
M. Ashino, D. Obergfell, M. Halu ka, S. Yang, A. N. Khlobystov, S. Roth, and R. Wiesendanger,
Nature Nanotechnology 3, 337 - 341 (2008).

  READMORE

Magnetic data storage technology of the future

Current-Induced Magnetization Switching with a Spin-Polarized Scanning Tunneling Microscope,
S. Krause, L. Berbil-Bautista, G. Herzog, M. Bode, and R. Wiesendanger,
Science 317 no. 5844 pp. 1537-1540 (2007).

  READMORE

Magnetic turning sense in the nanoworld

Chiral magnetic order at surfaces driven by inversion asymmetry,
M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger,
Nature 447, 190-193 (2007).

 

READMORE

Hamburg scientists manage the mapping of individual atomic magnetic moments of non-conductors

Magnetic exchange force microscopy with atomic resolution,
U. Kaiser, A. Schwarz, and R. Wiesendanger
Nature 446, 522-525 (2007).

READMORE