The world’s smallest magnet



As illustrated in the magazine Science on the 4th of January, 2013, physicists at Hamburg University have constructed, atom-by-atom, the world’s smallest stable ferromagnet composed of only five iron atoms. These magnets can be utilized in future magnetic storage technology based on atomic spin elements using their special quantum properties.

The peculiar properties of magnets have found their way into a vast number of technologies ranging from information technology to medical imaging.  In terms of storage technology, a reoccurring challenge is the continuing demand for smaller “bits” the fundamental storage unit. This involves the question of how small a “stable” magnet can be; namely a magnet which maintains its orientation without flipping over a prolonged period of time.   Such stability is necessary in order to store information into magnets. To store more and more information into a smaller and smaller area, extensive research has focused on shrinking such magnets with the ultimate goal of reading and writing magnetic information into single atoms. However, as magnets approach the atomic limit, they de-stabilize causing the orientation of the magnet to flip randomly, thus making it difficult to store information for meaningful periods of time.  The nature of how such “nano”-magnets flip and how they react to electrical current is a key question in current research since predicted quantum behavior becomes significant.  Since such nano-magnets are thousands of times smaller than typical magnets used in present technology, or more specifically, a million times smaller than a human hair, it is difficult to simultaneously fabricate such magnets and probe the magnetic properties of one such magnet at the atomic length scale. Recently technology has advanced in such a way that it is now possible to controllably fabricate nano-magnets, from the bottom-up, and simultaneously probe their individual magnetic properties. Dr. Alexander Ako Khajetoorians, Dr. Stefan Krause, Dr. Jens Wiebe, Prof. Roland Wiesendanger and collaborators have now constructed the world’s smallest stable magnet and demonstrated how to probe the dynamic properties of such a magnet at the single atom level. Such magnets, composed solely of five iron atoms and assembled on the surface of copper serve as the ultimate scaling limit for hard disk drive technology.  

In the laboratory of Dr. Alexander Khajetoorians, Dr. Stefan Krause, Dr. Jens Wiebe, and Prof. Roland Wiesendanger, a “spin-polarized” scanning tunneling microscope (SP-STM) is located which operates at temperatures slightly above absolute zero. With such a microscope, one can zoom in far beyond what conventional optical microscopes can “see”, approaching the limit of single atoms on a surface. The power of SP-STM relies on an atomically sharp magnetic needle which can be freely positioned above single atoms and sense their magnetic orientation. Additionally, the magnetic probe tip can move single Fe atoms with atomic precision and tailor their properties, as the Hamburg team has recently demonstrated. The spin-polarized tunnel current between tip and sample allows not only for imaging the magnetic properties of a single atom, but also for investigating the response of such an atom to the injection of electronic spins. The Hamburg team has demonstrated in recent years that these methods can be used to perform atomic spin-based logical functions and implement spin fabrication to realize the analogue of LEGO® with atomic spins. Nevertheless, while such experiments present an excellent form to understand fundamental physical problems in magnetism, a lingering fundamental question has been looming for years: what is the connection between a single atom like iron, exhibiting no stable magnetic state and everyday magnets which have a stable magnetic orientation, namely a fixed north and south pole?   Moreover, if such a stable magnet can be constructed at these length scales, it is important to understand, for technological developments, how such magnets respond to electrical current. The Hamburg team has now shown that as few as five iron atoms which sit on an atomically flat copper surface can be assembled into a single stable magnet and they have characterized the magnetic nature of such “quantum” magnets.

Clever schemes which utilize electrical current with a degree of spin polarization have been implemented in technology to “write” information into magnets electrically. The so-called “spin-transfer torque” effect replaces the need for bulky magnets in hard drives and allows for efficient information processing.   However, as magnets are scaled to the atomic limit, quantum effects can become heavily pronounced which may dramatically modify the behavior of usual magnets, like their stability, and their response to electrical currents. The bridge between an atom, and the conventional refrigerator magnet, is a question of numbers: How many atoms are needed to stabilize the assembled magnet? Such a stable magnet should maintain a stable magnetic state for a lengthy period of time, and ultimately it should be controllable by the injection of an electrical current. People have been able to grow samples with magnets of such size, however the ability to tailor them atom by atom, and probe each one individually has been lacking so far. Moreover, a number of questions concerning how the quantum effects modify the magnetic stability have puzzled theorists for a number of years. Combining collaboration with theorists in Hamburg and Jülich, it was possible to describe the response of such a magnet, by considering quantum mechanical relaxations which are only dominant at such small length scales. As technology approaches towards these limits in the near future, the work from Hamburg clearly demonstrates how such interactions can be controlled to design stable magnets which can be switched electrically. Moreover, this research, with its ultimate combination of spatial, magnetic, and temporal resolution of individual magnetic atoms, opens up the future for the ultimate miniaturization of spin-based technology down to the atomic scale.

PM 2013-01-04 gross

Fig. 1: A-B: Scanning tunneling microscope images of 5 individual Fe atoms on a copper surface, before (A) and after (B), construction of a stable nano-magnet. C: Cartoon illustration of how such magnets can be assembled into a miniature hard drive, where each state is read/written by an atomically sharp metallic tip of the STM which has a magnetic sensing needle at the apex.


Original publication:

Current-Driven Spin Dynamics of Artificially Constructed Quantum Magnets
A. A. Khajetoorians, B. Baxevanis, C. Hübner, T. Schlenk, S. Krause, T. O. Wehling, S. Lounis, A. Lichtenstein, D. Pfannkuche, J. Wiebe, and R. Wiesendanger,
Science 339 no. 6115 pp. 55-59 (2013).
DOI: 10.1126/science.1228519

More information:

Dr. Alexander Khajetoorians
Institute for Applied Physics
University of Hamburg
Jungiusstr. 9a
Germany - 20355 Hamburg
Phone: +49 – 40 – 42838 – 62 97
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


Roland Wiesendanger receives the "Heinrich Rohrer Grand Medal"

2014 11 12 slide

On November 5, 2014 Prof. Dr. Roland Wiesendanger has received the first "Heinrich Rohrer Grand Medal" at the 7th International Symposium on Surface Science (ISSS) in Shimane, Japan.




Molecular magnets swirl together

Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice
J. Brede, N. Atodiresei, V. Caciuc, M. Bazarnik, A. Al-Zubi, S. Blügel, and R. Wiesendanger,
Nature Nanotechnology 9 1018 (2014).

2014 brede READMORE

Surprisingly high transition temperature in a pure rare earth superconductor

Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit
P. Löptien, L. Zhou, A. A. Khajetoorians, J. Wiebe, and R. Wiesendanger,
J. Phys.: Condens. Matter 26 (2014) 425703.


Parity Effects in 120° Spin Spirals

Parity effects in 120° spin spirals

M. Menzel, A. Kubetzka, K. von Bergmann, and
R. Wiesendanger,

Phys. Rev. Lett.
112, 047204 (2014).

Dr. Alexander Ako Khajetoorians wins the Nicholas Kurti European Science Prize 2014

26. february 2014

More information

2014 02 26


Topologically stable magnetic Helix: theoretical Concept of a novel Technique for Information Transfer and Energy Storage

Topologically Protected Magnetic Helix for All-Spin-Based Applications
E. Y. Vedmedenko and D. Altwein,
Phys. Rev. Lett. 112, 017206 (2014).

2014 02 19


New technology for energy-efficient data storage

Electric-Field-Induced Magnetic Anisotropy in a Nanomagnet Investigated on the Atomic Scale
A. Sonntag, J. Hermenau, A. Schlenhoff, J. Friedlein, S. Krause, and R. Wiesendanger,
Phys. Rev. Lett. 112, 017204 (2014).

2014 01 09

Sonderforschungsbereich zum dritten Mal erfolgreich: Weitere 10 Millionen Euro für Erforschung des Magnetismus im Nanokosmos





PM 2013-11-21


5. Nacht des Wissens in Hamburg

02. November 2013
Jungiusstraße 11, 20355 Hamburg

View Slideshow

2013-11-02 NDW


On the cover of "Science": Magnetic nano-knots for data storage

Researchers use skyrmions to store information

Writing and Deleting Single Magnetic Skyrmions,
N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger,
Science 341 6146 (2013).

PM 2013-08-08 gross.


Enhanced Atomic-Scale Spin Contrast due to Spin Friction

Enhanced Atomic-Scale Spin Contrast due to Spin Friction

S. Ouazi, A. Kubetzka, K. von Bergmann, and
R. Wiesendanger,

Phys. Rev. Lett. 112 076102 (2014)

2014 04 07 READMORE

The world’s smallest magnet

Current-Driven Spin Dynamics of Artificially Constructed Quantum Magnets
A. A. Khajetoorians, B. Baxevanis, C. Hübner, T. Schlenk, S. Krause, T. O. Wehling, S. Lounis, A. Lichtenstein, D. Pfannkuche, J. Wiebe, and R. Wiesendanger,
Science 339 no. 6115 pp. 55-59 (2013).
PM 2013-01-04 news

New technique for imaging and manipulating tiny magnets

Individual Atomic-Scale Magnets Interacting with Spin-Polarized Field-Emitted Electrons,
A. Schlenhoff, S. Krause, A. Sonntag, and R. Wiesendanger,
Phys. Rev. Lett. 109 097602 (2012).

PM 2012-08-29


Direct imaging of magnetic molecular orbitals succeeded

Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets,
J. Schwöbel, Y. Fu, J. Brede, A. Dilullo, G. Hoffmann, S. Klyatskaya, M. Ruben, and R. Wiesendanger,
Nature Communications 3 953 (2012).

2012 08 02 gross


Spin spirals for energy-efficient computer systems

Information Transfer by Vector Spin Chirality in Finite Magnetic Chains,
M. Menzel, Y. Mokrousov, R. Wieser, J.E. Bickel, E. Vedmedenko, S. Blügel, S. Heinze, K. von Bergmann, A. Kubetzka, and R. Wiesendanger,
Physical Review Letters 108, 197204 (2012)


LEGO with atomic magnets

Atom-by-atom engineering and magnetometry of tailored nanomagnets,
A. A. Khajetoorians, J. Wiebe, B. Chilian, S. Lounis, S. Blügel, and R. Wiesendanger,
Nature Physics 8, 497–503 (2012).


A thermometer for the nanoworld

Joule Heating and Spin-Transfer Torque Investigated on the Atomic Scale Using a Spin-Polarized Scanning Tunneling Microscope,
S. Krause, G. Herzog, A. Schlenhoff, A. Sonntag, and R. Wiesendanger,
Phys. Rev. Lett 107, 186601 (2011).


Lattice of magnetic vortices

Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,
S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A.  Kubetzka, R. Wiesendanger, G. Bihlmayer, S. Blügel,
Nature Physics 7, 713–718 (2011).


Logic with atoms: the smallest OR of the world

Realizing All-Spin Based Logic Operations Atom by Atom,
A. A. Khajetoorians, J. Wiebe, B. Chilian, and R. Wiesendanger,
Science 332 (6033): 1062-1064 (2011).


Electrical contact with a bit of the quantum world

Detecting excitation and magnetization of individual dopants in a semiconductor,
A. A. Khajetoorians, B. Chilian, J. Wiebe, S. Schuwalow, F. Lechermann, and R. Wiesendanger,
Nature 467, 1084–1087 (2010).


Imaging and manipulation of atomic spins

Imaging and Manipulating the Spin Direction of Individual Atoms
D. Serrate, P. Ferriani, Y. Yoshida, S.-W. Hla, M. Menzel, K. von Bergmann, S. Heinze, A. Kubetzka, and R. Wiesendanger,
Nature Nanotechnology 5, 350 - 353 (2010).


How conduction electrons mediate between atomic bits

Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interaction mapped on the atomic scale,
L. Zhou, J. Wiebe, S. Lounis, E. Vedmedenko, F. Meier, S. Blügel, P. H. Dederichs, and R. Wiesendanger,
Nature Physics 6, 187 - 191 (2010).


La-Ola in nanomagnets

Magnetization Reversal of Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor,
S. Krause, G. Herzog, T. Stapelfeldt, L. Berbil-Bautista, M. Bode, E.Y. Vedmedenko, and R. Wiesendanger,
PRL 103, 127202 (2009).


Atomic bits in sight

Revealing magnetic interactions from single-atom magnetization curves,
F. Meier, L. Zhou, J. Wiebe, and R. Wiesendanger,
Science 320, 82-86 (2008).



Movement in the nanoworld

Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes,
M. Ashino, D. Obergfell, M. Halu ka, S. Yang, A. N. Khlobystov, S. Roth, and R. Wiesendanger,
Nature Nanotechnology 3, 337 - 341 (2008).


Magnetic data storage technology of the future

Current-Induced Magnetization Switching with a Spin-Polarized Scanning Tunneling Microscope,
S. Krause, L. Berbil-Bautista, G. Herzog, M. Bode, and R. Wiesendanger,
Science 317 no. 5844 pp. 1537-1540 (2007).


Magnetic turning sense in the nanoworld

Chiral magnetic order at surfaces driven by inversion asymmetry,
M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger,
Nature 447, 190-193 (2007).



Hamburg scientists manage the mapping of individual atomic magnetic moments of non-conductors

Magnetic exchange force microscopy with atomic resolution,
U. Kaiser, A. Schwarz, and R. Wiesendanger
Nature 446, 522-525 (2007).