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Preface

The work presented here concerns theoretical aspects of magnetism in many dif-
ferent systems of reduced dimensions including two-dimensional films, frustrated mag-
nets, magnetic nanoparticles and their arrays. This report summarizes investigations
performed by me and my co-workers at the University of Hamburg, the Max-Planck
Institute for Microstructure Physics and the University of Paris VII. Its intention is to
give a comprehensive overview on the main areas of my scientific activity in the last 7
years, which are Magnetic Ordering of the Spin Reorientation Transition, Anisotropic
Orientation of Magnetic Domain Walls, Magnetostatic properties of Nanoarrays and
Magnetism in Quasicrystals. The report is structured as follows:

- In the first part, the main ideas behind the work and a summary of the
most important results are given. The interconnections between different topics are
highlighted;

- The second part contains a selection of 19 manuscripts, which have been
already published or are in press. The aim of this section is to give deeper informa-
tion on the issues presented in the first part. Therefore, the papers are referenced
correspondingly to the Chapters of the first part;

- The appendix contains a full list of my scientific publications and patents to
give a complete overview on my activities.
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Chapter 1

Introduction

The configuration of magnetization on all length scales is one of the central ques-
tions of magnetism as it determines macroscopic properties of a magnet. Whilst in
the past the broader scientific issues have concerned magnetic structuring on a micro-
scopic scale, in the context of recent developments in the field of nanoscience magnetic
configurations on the nanoscale have become increasingly important.

The rapid rise of the scientific research on ever-smaller magnets is due to the
appearance over the past 10 years of a collection of new experimental techniques
that have made manipulation and construction of objects at the nanoscale possible.
Some of these experimental methods, such as scanning tunneling microscopy with
polarization analysis and magnetic force microscopy have created new capabilities for
characterizing nanostructures. The application of new and extraordinary experimental
tools to systems of reduced dimensionality has created an urgent need for a quantitative
and qualitative understanding of matter at the atomic scale. An additional motivation
for the investigation of nanomagnetic ordering is its increasing importance for its
application in sensors, logic devices and in data storage.

Many new problems, that are not characteristic of bulk materials, arise at the
nanoscale. These new problems generate many questions. Such as: what is the
role of frustrating spin arrangements for the stability and hysteretic properties of
two-dimensional magnets and nanoparticles; what are the size- and the temperature-
dependent properties of nanomagnets; what is the role of the structural disorder for
the magnetic ordering in nanoobjects and which effects may arise due to the discrete
nature of matter? Theoretically, these questions can be effectively studied by model
Hamiltonian methods or within analytical approaches. One of the best investigative
tools based on model Hamiltonians to solve these stochastic optimization problems
are Monte-Carlo methods. They are particularly good for realistically evaluating all
kinds of transition probabilities and the effects of entropy. Since magnetic ordering
at nanoscale is driven by entropy as well as by energy, Monte-Carlo calculations are
really essential for describing magnetization configurations on the nanoscale. Modern
classical Monte-Carlo schemes are able to describe large systems consisting of many
ten thousands of atoms. The method naturally incorporates long-range dipolar inter-
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actions, effects of the atomic lattice, the temperature and the entropy. In combination
with analytical calculations, and experimental evidence, the Monte-Carlo treatment is
a powerful tool for the description of magnetic ordering in magnets of reduced dimen-
sionality.

Outline

This work presents a systematic theoretical study of the influence of the compet-
ing interactions, discrete atomic structure, temperature, geometrical frustration and
the finite sample size on the magnetic ordering in nanostructures. The basic methods
used in this work are; extended Monte-Carlo numerical simulations, analytical calcu-
lations of magnetostatic moments of nanoparticles based on the fundamental theory
of electrostatics, numerical and analytical calculations of magnetostatic energies and
demagnetizing factors of nanoplatelets, and phenomenological approaches concerning
the calculation of the ground state magnetic configurations. The corresponding theo-
retical procedures are presented at the beginning of each of the four main sections of
the manuscript.

Chapter 2 is devoted to the theoretical description of the magnetic structure of
the Spin Reorientation Transition in nanometer thin films and of nanosize structures.
After a short introduction to the theoretical methods thickness-driven magnetization
reorientation is discussed in the framework of the first- and second-order uniaxial
magnetic anisotropy approximation. The correspondence between theory and recent
experimental advances on the spin reorientation transition is then analyzed. It is shown
that the discrete nature of an atomic lattice may lead to the size-driven reorientation
of magnetization in nanoparticles, i.e. the magnetization direction can be changed
by shrinking the lateral size, keeping the thickness fixed. It is predicted that the
critical size of the reorientation can be very large compared to the film thickness.
It is demonstrated that the shape anisotropy of a nanomagnet can be divided into
the discrete and the continuum contributions. A compact formula is derived for the
demagnetization factors and the dipolar magnetostatic anisotropy energy density for a
saturated (zero-susceptibility) continuum ferromagnet, possessing the shape of a right
circular cylinder of any geometric ratio k = d/t.

In the third Chapter the orientation of domain walls in magnetic nanowires is dis-
cussed. In mesoscopic crystals the orientation of magnetic domain walls is usually
determined by the competition between the magnetocrystalline and shape anisotropy.
An isotropic exchange interaction cannot affect the global wall orientation in bulk crys-
tals of cubic symmetry. It is demonstrated that in nanostructures of a few monolayer
thickness the magnetic anisotropy and the magnetostatic energy play a minor role
for the wall orientation. In case of low-symmetry objects the orientation of domain
walls is mainly determined by the discreteness of the atomic lattice structure and by
the exchange energy. The reduced symmetry of the film surface and the distortion of
the atomic structure due to the pseudomorphic growth of nanoobjects can often lead



to the orientational dependency of the exchange tensor and, hence, to the anisotropy
in the orientation of domain walls. Correlations of the theoretical results and recent
experiments on magnetic nanoordering are given.

The theoretical study of the magnetostatically interacting nanoarrays is presented
in Chapter 4. The multipole moments and multipole-multipole interactions of uni-
formly polarized particles have been calculated based on the fundamental theory of
electrostatics. The polarization may have its origin in magnetization or ferroelectric-
ity or be an intrinsic property of molecules. It is demonstrated that, depending on
the geometry of the particles, the higher order interactions can be comparable to, or
even stronger than, the dipole-dipole interaction. The higher order moments give rise
to an additional energy contribution in arrays of close packed polarized nanoparti-
cles. The influence of particle aspect ratios as well as array periodicity is discussed.
The low-temperature stable states and the magnetization reversal of realistic two-
dimensional nanoarrays with dipolar, and higher-order magnetostatic interactions are
studied theoretically. For a general geometry of the multipole-multipole interaction
energy a Hamiltonian in spherical coordinates has been introduced into the Monte
Carlo scheme. It is demonstrated that higher-order interactions considerably change
the dipolar ground states of in-plane magnetized arrays favoring collinear configura-
tions. The multipolar interactions lead to enhancement or decrease of the coercivity
in arrays with in-plane or out-of-plane magnetization.

Theoretical advances in the description of the magnetic ordering and its stability
in two-dimensional quasiperiodic tilings with strongly localized magnetic moments are
presented in Chapter 5. It is demonstrated that the combination of the magnetic
frustration and the quasiperiodic order of atoms leads to noncollinear ground states.
Experimental and theoretical evidence for the possibility of a new phase, in which
stable, magnetically ordered subtilings coexist with highly frustrated, glass-like regions
is given.
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Chapter 2

Magnetic Ordering of the Spin
Reorientation Transition in
Nanostructures

2.1 Introduction

A classification of experimentally available magnetic structures may be given in
terms of the dimensionality modulation: three-dimensional systems (3D), like bulk
materials or thin films; two-dimensional systems (2D), like surfaces, ultrathin films
and multilayers; one-dimensional systems (1D), like nanowires; and so-called zero-
dimensional materials with all three dimensions on the nanometer scale like small
atomic clusters or nanoparticle arrays. With decreasing dimensionality of a magnetic
object new factors determining the magnetic ordering come into play.

One of the very interesting effects one observes in ultra-thin 2D ferromagnetic films
and 1D nanoparticles is a reorientation of the spontaneous magnetization by varying
either the film thickness or the temperature. For not too thin films the magneti-
zation generally is in-plane due to the shape anisotropy originating from the dipole
interaction. On the other hand in very thin films this may change due to various
competing anisotropy energies of structural, magnetoelastic or magnetostatic origin.
Broken atomic symmetry at the surfaces of a film, or absent in the ideal crystal strain
induced distortion, often leads to uniaxial anisotropy energies favoring a perpendicu-
lar to the film plane magnetization [1]. Over the last decade the investigation of the
Spin Reorientation Transition (SRT) in ultrathin films has been a vivid field in basic
research. A good collection of literature on the theory of temperature-driven SRT can
be found in [2]. To describe the thickness-driven SRT Monte Carlo simulations and
analytical studies have been performed in first-order approximation of perpendicular
magnetic anisotropy. In those investigations emphasis was put on the change of the
magnetization orientation as a result of competing anisotropy and dipolar energies
with temperature or thickness as a driving parameter [3-14]. Phase diagrams were

5
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put forward and noncontinuous magnetization changes postulated [3, 4, 7]. The evo-
lution of the magnetic microstructures was not explicitly studied in these numerical
investigations. The configuration of magnetization, however, may strongly influence
the details of the switching of the magnetization and thus the macroscopic behavior
of the ferromagnet as it has been shown experimentally [15-19]. Therefore, the role of
magnetic ordering is an important question for physics of the SRT.

In this review a survey will be given of recent theoretical advances in the study
of the magnetic microstructure of SRT. The simulation technique will be introduced
in the Section 2.2. Chapter 2.3 will be focused on the thickness dependent Spin
Reorientation Transition in the first order perpendicular anisotropy approximation.
Then, the effects of higher-order anisotropies will be analyzed (Chapter 2.4). The
influence of the discrete structure of an atomic lattice on the nanomagnetic ordering
and the size driven SRT will be discussed in the Chapter 2.5.

2.2 Simulation

2.2.1 Competing interactions

The ordering of magnetization is a cooperative effect made possible, below a crit-
ical temperature, by the interactions between the magnetic moments of the unpaired
electrons throughout a solid. The magnetization configuration is influenced by many
factors, some of the more important of which are spin value and dimensionality, the
degree of structural and magnetic disorder, the temperature, and the presence of com-
peting interactions.

The main energetic ingredient governing magnetic ordering is the quantum mechan-
ical exchange interaction. Without going into details the exchange coupling between
two neighboring magnetic ions will force the individual moments into parallel (fer-
romagnetic) or antiparallel (antiferromagnetic) alignment with their neighbors. It is
very strong but short range, i.e. decreases rapidly as the ions (atoms) are separated.
The direct exchange interaction in it simplest form can be described by the Heisen-
berg Hamiltonian containing a sum of the products of two variables, vector spins or
operators belonging to the nearest-neighboring lattice sites

Hepen = Z ngzg] = Z Jl(a(SZxS]x + Szysjy) + 6(5555)) ) (21)
(:3) (.4)

where S*, SY, S* are projections of either an operator S for a quantum system or of a
vector S for a classical system. The case of @« = 0, = 1 corresponds then to the Ising
model, « = 1, § = 0 - to the XY model and o« = = 1 - to the Heisenberg model.
For relatively high temperatures the magnetic ordering can be successfully described
in the framework of the classical models. The main difference between the three
classical cases is different number of available states. For magnetic systems of reduced
dimensionality, where noncollinear magnetic states often appear, the Heisenberg model
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has been chosen for the computations as a three dimensional Heisenberg vector of a
unit length can have any orientation in 3D physical space.

The second energetic component which is always present in an ensemble of atomic
magnetic moments (dipoles) is the dipolar interaction. It comes from the fact that
every moment itself is a source of a magnetic field and can be aligned in the field of any
other dipole and vice versa, i.e. the moments interact. The interaction Hamiltonian
reads

Hy - DZ (Sir.«?).sj _ 3(Si : I‘ij)E)(Sj - rij)) ’ (2.2)

i.j & "ij

where 7;; is the distance between moments ¢ and j and D = % - the strength of
the coupling with pg - the permeability of the vacuum, ¢ - Lande factor, ug - Bohr
magneton and a - lattice constant. The strength of the dipolar interaction between
two dipoles is only of order of few degree of Kelvin. However, because of the long-
range character and the position dependence the dipolar interaction may significantly
change a critical behavior and magnetic ground states.

The dipolar interaction is the source of the so-called shape anisotropy. The shape
anisotropy of a finite body (A FEp) is described by the demagnetizing tensor N: AEp =
N -2m M2, where Mg is the saturation magnetization and 2w M2 the shape anisotropy
of the infinite continuous magnet. Neglecting the discrete nature of matter N can be
analytically calculated for uniformly magnetized bodies like ellipsoids.

Another energetic component which is necessary for the appearance of SRT is the
crystal anisotropy. Whatever the microscopic origin of crystal anisotropy is, following
a phenomenological approach, one may express the anisotropy energy density as a
function of the direction cosines (or sines) of the magnetization component along
the anisotropy axis, because the anisotropy energy is invariant under magnetization
reversal. In the case of ultrathin films with uniaxial anisotropy, the energy density is

Kysin?(0) + Kysin*(0) + Kssin®(0) + K3sin®(0)cos(6¢) + ... (2.3)

with 6 and ¢ polar angles with respect to the direction of the anisotropy. The mag-
nitude of anisotropy constants decreases rapidly with increasing order. However, as
it will be demonstrated below, even weak higher order contributions may change a
magnetic ground state of a system if the sign of a higher order term is different from
that of the first order anisotropy constant.

2.2.2 Monte Carlo Simulations

As has been pointed in the Section 2.2.1, for relatively high temperatures a mag-
netic crystal can be successfully described by atomistic classical models. During the
last years we could reach a considerable progress in the area of application of clas-
sical Monte-Carlo (MC) calculations to real magnetic systems [20-25]. Modern MC
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computational schemes are able to describe large systems consisting of many tens thou-
sands of atoms [23]. The long-range magnetostatic interactions and temperature can
be incorporated into the model Hamiltonian with reasonable efforts. Since magnetic
ordering is a complicated many-body problem driven by minimization of the total en-
ergy this method is extremely powerful for the description of ground state properties
of magnets.

A large advantage of the MC approach is that in contrast to the micromagnetic
scheme, where a magnetic material is represented by blocks of a continuous medium, a
discrete lattice structure of a specific material can be introduced into the calculations.
Introduction of lattice symmetry provides a unique opportunity to account for the ef-
fects arising from the discrete nature of matter. However, calculations with atomistic
resolution are very computer power intensive, especially when long-range interactions
are considered. In this case one needs the CPU time proportional to N2 per one Monte
Carlo (MC) step, where N is the number of spins. For studies of magnetic ordering in
objects with reduced dimensionality the dipolar coupling plays an especially important
role, as it can compete with the exchange interaction due to its long range character.
Hence, it must be considered in calculations. This, however, means that large samples
can be treated only with periodic boundary conditions in order to reduce the size of a
sample to the size of the periodically repeated unit cell. Unfortunately, the periodic
boundary conditions often cannot be addressed for nanostructures of finite dimension
because of the non-periodicity of the magnetic structure. In addition, periodic bound-
aries in many cases can introduce artificial periodicity and other unwanted effects. To
overcome these difficulties we have developed a scaling approach [21] which enables
us to consider very large samples (up to 1um) with open boundary conditions which
could not be introduced directly in an atomistic numerical computation. In this ap-
proach we introduce into the Hamiltonian an effective dimensionless parameter which
permits to change the mesh of the calculation in dependence on specific objectives of
the system.

This dimensionless parameter is defined mainly through the coupling constants
D

of the exchange and the dipolar interaction ¢ = <= with the lattice parameter a.
Without anisotropy and without external field, the scaling parameter a remains the
only free variable: Different ratios D/J can be considered as issued from a single case
with a given ¢ value but with different effective lattice parameters a. Thus increasing
the dipolar coupling D while keeping the exchange coupling J constant amounts to a
mere increase of the effective lattice parameter a. In the usual 3d magnets, the ratio
J%g is of the order of 1073...10~%, where qy is a typical atomic distance in metals. Thus,
for D/J = 0.1, a = 5ay...10ay and for D/J =1, a =~ 10ay...20ay, i.e. the larger values
of D/J correspond to the larger samples and the coarser calculation mesh. With this
method one can look at the structures first with a coarser resolution which requires

less CPU time and afterwards resolve the interesting places more accurately.

The figure 2.1 shows for example a 1 um large platelet made from a soft magnetic
material as Permalloy possessing several metastable magnetic vortices. Because the
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mesh is large, the internal structure of a vortex cannot be resolved. If the structure is
calculated with a finer factor ¢, one recognizes immediately that the core of the vortex
has a significant out-of-plane component of magnetization (Fig. 2.2) what has been
recently observed experimentally [26].

-

-
/

>\>

Figure 2.1: Top-view of a 1um large soft Figure 2.2: Perspective view of a por-
magnetic platelet with several metastable tion of the same, but better resolved sam-
vortex structures. The cores of the vortices ple. The core of a vortex has a strong out-

cannot be resolved. of-plane component of magnetization. The

size of the core can be easily determined.

The MC program has been successfully applied for many structural phenomena
such as magnetization reversal [20], domain or vortex formation [21, 22|, and spin
reorientation transitions [23-25]. We understand the work with this program as ex-
perimental investigations as the methodology is very similar to that of a real experi-
ment. In the simulations we use magnetic parameters of real 2D systems which permit
certain analogies to experimental results. The aim of the investigations lies not in the
modelling of abstract, theoretical systems, but on the description of the real behavior
of experimentally accessible magnets.

2.3 Spin Reorientation Transition in the first order
anisotropy Approximation

In ultrathin films the configuration of magnetic moments, i.e. the magnetization
configuration, is governed by the balance between dipolar and anisotropy energies.
Due to the long-range order the dipolar energy is minimal when all magnetic moments
compensate each other and the total magnetic charge is equal to zero (so-called pole
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avoidance principle). In order to satisfy this minimum condition the dipolar energy
pushes all spins into the film plane and distributes them evenly. The anisotropy en-
ergy, vice-versa, enforces spins to lie in some preferred directions. One experimental
manifestation of the competition of these two energies is found in the thickness driven
spin reorientation in Co/Au(111) films [17]. In the limit of small thickness the Co has
a dominant perpendicular surface anisotropy which causes a perpendicular magnetiza-
tion orientation. With increasing film thickness the dipolar energy becomes dominant
and the magnetization turns into the film plane. One of the best known analytical
treatment of spin reorientation in a one monolayer film is given in a paper by Yafet and
Gyorgy [11]. The authors have made an extension of an old ansatz [14] introducing
domain walls of finite width. In the analytical description Yafet and Gyorgy find that
close to the transition point domain walls become larger than domains. In this state
the whole film exhibits a wave-like phase. In the region where magnetostatic energy
dominates their theory cannot make any predictions.

We have studied the same kind of reorientation transition by means of computer
simulations of thin magnetic films [23]. The advantage of our method is that we can
deal with the model Hamiltonian without limitations concerning the configuration of
domains and domain walls as in Ref. [11]. We performed an extended Monte-Carlo
treatment of a spin monolayer on a triangular lattice of 100 x 100 effective magnetic
sites with three-component vector spins S of unit length S = 1 . This corresponds to
a surface orthogonal to the ¢ axis of a hep lattice or to the (111) surface of an fce
structure. The Hamiltonian of the problem includes exchange, dipolar interactions,
and perpendicular anisotropy (see the Section 2.2.1).

We have performed simulations for three typical values of the ratio 1/q = ‘]53 ,

namely 1/¢ = 10, 1/g = 1, and 1/q¢ = 0 (pure dipolar interactions with K7 finite).
In all simulations continuous transitions were found. We focus on the results for
1/q = 10 as the scales for Co/Au(111) (5 nm mesh width and 500 nm sample size) are
best adopted to the microstructures that appear in the spin reorientation transition.

The results are presented as a low-temperature phase diagram in Fig. 2.3. The
averaged values of the vertical component S, and the squared value S? of the magnetic
moment versus f with f = E4/Fp as the ratio of perpendicular anisotropy energy
E4 to the dipolar energy Ep. Usually the MC results are plotted as a function of
K, /Ep. As the behavior of the magnetic sample is governed by the total energy we
find normalized energies more convenient. The magnetostatic energy is defined as
the difference between the vertical single domain configuration and a stray field free
vortex structure. This energy and the anisotropy energy is normalized with respect
to the number of moments and used for calculating the f value given in Fig. 2.3. By
this we avoid major effects of shape and size on the graph and obtain a generalized
behavior of the spin reorientation in thin films. S, and S? have been obtained from
the simulations. While S? is proportional to the total amount of the structure with
out-of-plane magnetization orientation, S, reveals information about the occupation
of the two vertical states of magnetization.
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Figure 2.3: (a) Plot of S? and S, versus f. S, is the perpendicular component of
magnetization and f = E4/Ep is the ratio of anisotropy energy to dipolar energy.
The shaded areas separate the phases (A,B,C,D). The phases are characterized by
the different microstructures, which are shown as insets in the diagram. The mi-
crostructures have been obtained for disk-shaped (f ~ 1.46) and rectangular samples

(f = 1.46) of about 10200 vector spins on a triangular lattice for kpT'/J ~ 0.01.
(b) Perspective view of an enlarged part of the phase B. For clarity, only one row

out of two and one moment out of two in the row are drawn as cones.

Our results are in good agreement with the analytical model [11] within its range
of validity. We obtain, however, a more precise picture of domain size and shape de-
pendence on the ratio f, as no restrictions on admissible domain patterns were made.
In the region where anisotropy energy dominates (f > 1.4) the size of out-of-plane do-
mains is much larger than 500 nm limited by the size of our sample in the simulations.
In the experiment [17] this kind of domains was found in very thin Co/Au(111) films
(1...3.7 monolayers) with strong surface anisotropy. Fig. 2.3b represents the typical
domain structure for the region 1.1 < f < 1.4. The structure is characterized by small
out-of-plane domains with narrow domain walls. The domain size decreases with the
ratio f and reaches domain sizes of 300-400 nm for f =~ 1.1. Domains of this size
were also found in a certain thickness range when a collapse of domain size was exper-
imentally observed in annealed Co on Au(111) films. At the point f ~ 1.1 the total
magnetization per spin is zero. This means that the magnetic moments are evenly
oriented in all directions. Fig. 2.4a exhibits a relaxed MC magnetization configuration
at the point where the dipolar energy is equal to the anisotropy energy f = 1.

It is almost the central point of the transition region from out-of-plane to in-plane
configurations (0.8 < f < 1.1). Yafet and Gyorgy reached only f = fu, =~ 0.99 and
predict there a purely two-dimensional wave-like profile of magnetization with macro-
scopic size of domain walls. We find the cosine-like profile at the same point (Fig. 2.4b).
The profile and shape, however, is more complicated than the predicted 2d structure.
Below f = 1.2 the domain walls become larger, as more and more magnetic moments
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from the vertical magnetized do-
mains are tilted. It is the beginning
of the formation of vortices. At the
point f = 1 walls meet each other
and form a kind of spiral profile
(Fig. 2.4b). The magnetization ro-
tates in a helicoidal form along all
three principal axes. The structure
formed has been called the twisted
phase. At this particular point
the magnetic moments are evenly
oriented in all directions, which is
characteristic of the twisted config-
uration. This yields S? = S} =
S2 = 1/3 for a sample of infinite
extension.

To analyze the stability of the
twisted configuration its energy has
been compared with several in-
plane (vortex, single domain) and
out-of-plane (with different periods
of up and down domains) configu-
rations for f = 1. The numerical values of the energies can be found in the Ref. [23].
The main conclusion is that at that particular point of the phase diagram the twisted
configuration remains the one with the lowest energy among all considered magnetic
states.

Figure 2.4: Top-view of a 1um large soft magnetic
platelet with several metastable vortex structures.
The cores of the vortices cannot be resolved.

In conclusion, consideration of the magnetic microstructure reveals a continuous
character of the SRT in ultrathin magnetic films with the perpendicular anisotropy.
In first-order anisotropy approximation a continuous reorientation transition occurs
from an out-of-plane magnetization to a vortex structure. A new phase, the twisted
configuration, is found as an intermediate structure between these two states. At the
point where the dipolar energy is equal to the perpendicular anisotropy energy the
twisted configuration represents the minimum of the free energy.

2.4 Spin Reorientation Transition in the second or-
der anisotropy Approximation

The importance of higher-order anisotropy contributions for the spin reorientation
transition has been pointed out rather long time ago [27-29] and a phenomenological
magnetic phase diagram in second-order anisotropy approximation has been postulated
[27]. According to those investigations the reorientation can proceed either through



2.4. Spin Reorientation Transition in the second order anisotropy Approximation 13

the canting of magnetization or through the state of coexisting local minima for the
in-plane and the vertical magnetization.

The first option was quoted as a second-order transition or a continuous reorien-
tation. A possible microstructure of those phase, however, has not been considered.
The second kind of transition should proceed via states of ”coexisting phases”. The
reorientation through this path is often classified as a discontinuous or first-order SRT.
The classification is due to the assumptions or the models that are made to explain
the flip of the moment. In the state of coexisting phases both orientations of magne-
tization have local minima. Hence, there is a possibility for the magnetization to be
oriented along one or the other direction. Two models of occupation are commonly
accepted leading to a discontinuous flip, i.e. the ”Perfect Delay” and the ” Maxwell”
convention [30]. Initially in both models the magnetization occupies the state of the
lowest minimum. In the first model the magnetization is believed to stay in that state
until the corresponding minimum of the free energy is completely erased. The second
model assumes that the orientation of magnetization is always determined by the low-
est lying energy minimum. A sudden flop appears at the point where both minima
have equal depth. Both models have been discussed in literature for zero temperature.
In the common discussion of the discontinuous transition neither finite temperature
nor any microstructure has been taken seriously into account.

2.4.1 The Phase Diagram

To clarify the question about the magnetic microstructure of the SRT in the second
order anisotropy approximation we have recently performed a spatially resolved anal-
ysis of the magnetization reorientation in the framework of competing dipolar, first-
and second-order contributions of the perpendicular anisotropy (see Chapter 2.2.1) for
a given exchange coupling [24, 25]

- —JY s S+DZ<S ) <si-rij2'5('sj-rij>)

<ij> )

+Klzsm 0+KQZSIH 0 . (2.4)

As in the previous Chapter the SRT Wlll be discussed in the appropriate anisotropy
space. For the sake of simplicity the diagram is given by K ff T _ the difference between
first-order anisotropy K7 and demagnetizing energy density or shape anisotropy Ep
- and the second-order anisotropy energy density K, (Fig. 2.5). Thus, Kff ! takes
the magneto-static energy contribution into account. Ep is taken as the magneto-
static energy of an infinite film, i.e. 27MZ. We want, however, to strengthen that
in the simulations the magneto-static energies are calculated exactly while the phase
diagram helps to make the presentation of the findings clearer. For positive K lef ! and
K, vertical magnetization is favored while negative values cause an in-plane state (see
Eq. 2.4).
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In the region of ”vertical” magnetization (Fig. 2.5), for positive K&/ and K, >
—%K 1 11 , we find the following microstructure. For large K7 1 the vertically magnetized
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Figure 2.5: Micromagnetic phases of a monolayer of classical magnetic moments in the

anisotropy space (second-order uniaxial anisotropy approximation) after Ref. [27, 31]. K ff f

is the difference between first-order anisotropy and demagnetizing energy density Kff I =

K| — Ep, K> is the second-order anisotropy density. The lines Ky = —%K ff Fand K ff F—o
separate vertical, canted, in-plane and coexistence phases (see text).

domains are very large. With K ff ! decreasing the domain size shrinks and the domain
walls become broader. This result is similar to the findings in first-order anisotropy
approximation [11, 23|. If K3 is large the domain size and the domain wall width are
mainly determined by K,. The trend is that the stronger the second-order anisotropy
the narrower are the domain walls and the larger are the domains. In the close vicinity
of K ff ! — 0 with non-vanishing K, the wall width is finite in contrast to the infinite
sinus-like profile of magnetization in the first order anisotropy approximation. This
means that K5 substitutes K7 in the definition of wall width and energy. For K ff )
and Ky = 0 the twisted phase described in the Chapter 2.3 is formed.

For negative K/ and K, < —%Kfff (region ”in-plane” in Fig. 2.5), the vertical
magnetization vanishes and a complete in-plane orientation of the magnetic moments
exists. To minimize the magneto-static energy vortex structures form as the magnetic
anisotropy in the film plane was set to zero. In the ”in-plane” region K5 has only minor
influences on the microstructure compared to the former situation with K7 7>
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In the following we will discuss situations where the microstructure is strongly
dominated by the interplay of K</ and K.

2.4.2 Canted Phase

At first for K/ < 0 and K, > —%Kleff (inset ”"canted” in Fig. 2.5) the negative

K ff ! competes with the positive Ks. The energy minimization requires canting of the
magnetization to the film normal [10, 27-29, 31, 32]. In fact we find the canting of
magnetic moments in the simulation (Fig. 2.5). The vertical component of magne-
tization changes continuously from 1 at Kff I'= 0 to zero at K, ~ —%Kff /. In the
literature this phase is called ”cone-state” as it is generally assumed that the canted
magnetic moments are distributed uniformly on a perimeter of the base of a cone with
no preferred direction of the in-plane components. We find, however, that the canted
magnetic moments form domains with in-plane components oriented along the princi-
pal directions in the lattice plane although the in-plane anisotropy was set to zero. The
principal axes of the triangular lattice become the in-plane easy-axes of magnetization
due to the dipolar interaction [33]. We may conclude that in the canted phase the
ferromagnetic system is already affected by negligibly small in-plane anisotropies. The
in-plane anisotropy causes the appearance of domains with magnetization components
along distinct in-plane directions.

A top-view of the domain structure in the canted regime is presented in the Fig. 2.6.
In Fig. 2.6(a) different shades of gray represent different orientations of the magnetic
moments in the film plane. In Fig. 2.6(b) the different shades of gray give the up-
and down- components of magnetization. The frequency distribution of the in-plane
component of magnetization in the down-canted domains is given in Fig. 2.6(c). It
demonstrates that two main in-plane orientations of the magnetization (around 240°
and 120°) appear. For the vertical component the frequency histogram Fig. 2.6(d)
reveals that the angle to the film normal is identical for all moments in the domains.
The angle is equal to the value one obtains from the analytical treatment in case

K&l . . Kelt _
of 0 < —%[1(—2 < 1, ie. Oy = arcsiny/— 7~ Lhe small amount of deviating

orientations is found in the domain walls. A three-dimensional representation of the
magnetic moments is given in Fig. 2.6 (right). Hence, a continuous reorientation
transition through the phase of canted domains occurs. In this region K5 has a strong
influence on the microstructure of magnetization.

2.4.3 Coexisting Phases

The third possible path for the reorientation of the magnetization proceeds via the
forth quadrant of the anisotropy space (Klef >0, Ky, < 0).

In this region (inset ”coexistence” in Fig. 2.5) we find that the average vertical
component of magnetization goes gradually from almost unity above Ky = —% - K ff f

to zero at K ff F'—= 0. This continuous change of the magnetization component can lead
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Figure 2.6: Top-view (left) and perspective view (right) of a portion the magnetic mi-
crostructure in the canted phase for Kfff = —04Ep, K9 = 0.65Ep and kgT/J = 0.05.
(a) shows a top-view of the microstructure. In this image the in-plane component of
magnetization is coded in gray. Light-gray color gives the part of the sample with an
in-plane component pointing mainly to left or right in the plane of drawing (azimuthal
orientation of 0° or 180°). Dark-gray color indicates the regions having the in-plane com-
ponents of magnetization at the angle of 60° or 240° to the horizontal within the plane
of drawing. (b) gives the out-of-plane components of magnetization in the same sample.
Dark and light-gray arrows represent canted-down and canted-up domains correspond-
ingly. (c) exhibits the frequency distribution of the in-plane component of magnetization.
The abscissa gives the angle of the magnetization to the horizontal within the plane of
drawing. (d) displays the frequency distribution of the out-of-plane component of the
magnetization. The abscissa gives the component of the magnetization along the normal.

to the erroneous conclusion that the reorientation proceeds via the canting of mag-
netization. The canting phase, however, does not exist in this part of the anisotropy
space. We find in the simulation a magnetic microstructure that consists of domains
magnetized perpendicular and in-plane, i.e. a coexistence of the two phases (histogram
Fig. 2.7b). The domain walls cause the small amount of moments with deviating ori-
entation. Hence, the very existence of two local minima in the free energy leads to the
appearance of domains with vertical and in-plane orientation of magnetization. This
result rules out the models discussed in literature for 7' = 0 K, i.e. "Perfect delay”
and ”Maxwell” convention [30].

In our simulations we find an increase/decrease of the in-plane/vertical domains
size with decreasing K ff 7. This means that the frequencies of population of the two
phases of magnetization depend on the ratio K&/ /K,. A top-view of the microstruc-
tures of the state of coexisting phases is presented in Fig. 2.8. Fig. 2.8(a) represents the
situation where the vertical magnetization is favored which leads to the preponderance
of vertically magnetized domains. On a first glance the in-plane domains could be mis-
leadingly interpreted as walls. The magnetization profile, however, deviates completely
from that of a domain wall. While in the wall a continuous tilting of the magnetiza-
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Figure 2.7: Microstructure
of the state of coexisting
phases for Kleff = Ep, Ky =
—0.8Ep and kpT/J = 0.05.
(a) Perspective view of an en-
larged part of the sample. For
clarity only one row out of
two and one moment out of
two in the row are drawn as
cones. (b) Frequency dis-
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tion is expected we find that all spins lie in the film plane except for a thin region,
i.e. wall, along the domain contours (Fig. 2.8a). The walls are not exactly described
in our simulations as the mesh size is too large. If the in-plane orientation is more
favorable (deeper minimum) an in-plane vortex-like structure appears (Fig. 2.8(b)).
The vortex-structure is a consequence of minimization of the magneto-static energy
as no in-plane anisotropy is assumed. The vertical domains remain in the core of the
vortices and at the sample edges. Again the continuous transition between adjacent
phases is achieved via the microstructure.

The multi-domain state of the coexisting phase transforms into a single domain
state when the sample size is smaller than the typical domain size for a given K7 7 /K.
In that situation the ratio of K ff ! /K5 defines the probability to find the sample in
a vertical or an in-plane magnetized single domain state. The domains with in-plane
magnetization do not show vortex structure in small samples. The mono-domain
configuration is energetically preferred as the gain in the dipolar energy is lower than
the loss in the exchange energy for small structures.

In conclusion, a strong influence of the second-order perpendicular anisotropy on
the microstructure of the spin reorientation transition is found. For Ky > 0 the tran-
sition via a canted domain structure is established that yields the smooth, continuous
connection between the vertical domain structure and the vortex structure with in-
plane magnetization. For K5 < 0 a continuous reorientation via a state of coexisting
vertical and in-plane magnetized domains occurs. The sizes of the vertical and the
in-plane domains depend on the ratio of K ff ’and K. The spatial arrangement of the
domains can change with time, while the frequency distribution of the in-plane and
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Figure 2.8: Top-view of the microstructure of the state of coexisting phases and corre-
sponding energetic potential. Dark- and light-grey areas represent spin-up and spin-down
domains correspondingly. Black arrows show the in-plane domains, kgT'/J = 0.05. In (a)
the situation of a deeper minimum for the vertical phase (Ky = —0.8K fff f ) is shown. The
region between the vertical domains are in-plane magnetized domains. (b) exhibits the mi-
crostructure for the situation that the energy minimum for the in-plane phase is deeper
(Ky = —1.1Kfff). Note that vertical domains remain at the edges and in the center of
domains with "rotating” in-plane magnetization. They will shrink to the center of vortices
found in the in-plane phase.

the vertical phases is invariable.

2.4.4 Theory versus Experiment

The experimental investigation of the SRT mechanism requires microscopic infor-
mation about the magnetic domain structure. Different experimental techniques have
been used for the imaging of magnetic domains within the SRT. These are photoelec-
tron emission microscopy (PEEM) with x-ray magnetic circular dichroism (XMCD)
[34], spin-polarized low-energy electron microscopy
(SPLEEM) [35, 36], scanning electron microscopy with polarization analysis (SEMPA)
[16, 17, 37], magnetic force microscopy (MFM) [38], scanning tunneling microscopy
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with spin polarization analysis (SPSTM) [39]. The different kinds of SRT have been
also studied by surface integrating methods like magnetooptical Kerr microscopy
(MOKE) [40, 41], magnetic torque magnetometry [42] or Brillouin light scattering
(BLS) measurings [43].

The experimentally studied domain structures agree in many aspects with the-
oretical predictions. So, domains of sizes predicted in [23, 25] have been experi-
mentally observed close to the reorientation transition in annealed Co/Au(111) films
[16, 17, 37]. The borderlines of the phase of coexisting domains in the calculations are
in good agreement with the experimentally defined borders of the ”gray” zone of SRT
in Co/Au(111) [37].

Experimental evidence of canted and coexisting domains predicted theoretically
in the second order anisotropy approximation [24, 25] has been recently revealed in
Co/Au(111)/W(110) and Fe-Co on Au(111) [35]. The coexisting domains have been
also found in Fe grown on Cu/Si(111) [38]. The continuous rotation of the magneti-
zation from out-of-plane to in-plane through the domain structure where the magne-
tization is canted has been reported for Cu/Ni/Ci/Si(001) films [42, 43].

2.5 Size-dependent Spin Reorientation Transition

Magnetism at small length scales has lately attracted considerable scientific atten-
tion. Interesting physical phenomena occur in magnets with all three dimensions on
the nanometer scale. An array of such magnetic particles can potentially provide a
huge gain in information storage density [44]. Hence, the understanding of the mi-
cromagnetic ordering in ultra-low-dimensional objects is of high significance for the
fundamental physics of magnetic materials as well as for technological applications.
The increased ratio of boundary to non-boundary atoms in such structures can lead
to unusual physical phenomena.

2.5.1 The Shape Anisotropy of Nanoplatelets

The calculation of the shape anisotropy (see Chapter 2.2.1) has been performed for
spheroidal or prismatic samples in the approximation of a continuum magnetization
[45, 46]. The derived demagnetizing factors depend on a geometric ratio k, which
is for example given by the thickness-to-diameter ratio L/t of the sample shape. In
continuum approximation Ep deviates from unity only for structures where L and ¢
are comparable.

It has been proposed that the model of a continuum magnetization is no longer
valid when the film thickness is reduced to a few atomic layers [47, 48]. In this case
the system is treated as a collection of discrete magnetic dipoles, which are arranged
on a crystalline lattice. Calculations of the shape anisotropy have been performed for
infinite large ultrathin films, and a deviation from the continuum magnetization model
was found for films thinner than 16A. The consideration of a discrete magnetization
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yielded a reduced stray field energy for perpendicular magnetization of ultrathin films
as compared to thick films, and the magnitude of deviation depends on the lattice
type [47].

Recently, we have numerically calculated the shape anisotropy of structures with
a limited lateral size [49]. Analytical approximations of the results [49] have been
provided [50]. The platelets were discs of finite diameter L and thickness ¢ on a
discrete lattice. Diameter-to-thickness ratios k = %, ranging from 40 to 1000 with
the thickness ranging from 1 to 6 monolayers as well as different crystal arrangements
(sc[100], bee[110], bee[100], fee[111], fee[100], hep[0001])were considered. The shape
anisotropy (dipolar magnetic anisotropy energy) has been calculated as the difference

between the dipolar energy of the vertical and the in-plane single domain state: Ep =
Ep(L) — Ep(|l).
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Figure 2.9: Numerically calculated demagnetizing energy density AEp as a function of

the dimensional aspect ratio k = L/d for 1-4 monolayer films on a triangular lattice with

hep stacking. AEp is normalized with respect to the demagnetizing energy in the contin-

uum limit 27 M 52, The straight horizontal line corresponds to the perpendicular magneto-

crystalline anisotropy F4. The dashed vertical lines denote the critical size k¢ of the reori-
entation.

The results of the calculations for a triangular lattice with hep stacking are shown
in Fig. 2.9 as a function of k = L/t for 1-4 ML thick films. The calculated energies
are normalized with respect to 2r M2. For other lattices similar results were obtained.

The exact calculation of the dipolar sums deviates strongly from the magneto-
static energy obtained from the continuum ansatz (Fig. 2.9). Instead of a unique
Ep(L/t) function we obtain different curves for different sample thickness. Thus, the
shape anisotropy of discs with diameters of several hundred lattice constants and a few
atomic layers thickness (nanoplatelets), depends on both size L and thickness ¢, and not
just simply on the ratio of the two parameters. For example, ED(L/t) of the platelet
100 x 1 on a hcp lattice is 1.2 times smaller than that of the platelet 300 x 3, although
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k = 100 is the same for both objects. A remarkable result of those calculations is
that the size effect already comes into play for rather large monolayer platelets of
a few hundred atoms in diameter, and not only for situations where L/t = 1. For
t > 5 ML Ep(k,t) merges into Ep = f(k). In all of these cases, the limit of infinite
lateral dimensions was studied and the results of previous studies [47, 48, 51| have
been retrieved.

A non-trivial step was then taken and the rather individual curves, corresponding to
the different thicknesses at ”fixed” structure, were normalized against the value for the
dipolar magnetic anisotropy energy (MAE) 2w M2 of the laterally infinite sample. It
was then established [49] that all these individual curves collapsed to a single, and thus
universal, curve whose precise appearance depended on the ratio k of the cylindrical
island only. This universal curve for the rescaled dipolar MAE was compared to the
one for the dipolar MAE of an ellipsoid of revolution [49] and the disc [50] with the
same aspect ratio in the continuum micromagnetic approximation (see, e.g., Ref. [45]).
Deviations were established and the conclusion was made that the dipolar sum can
be separated into two contributions: thickness- and geometry-dependent parts. The
geometry-dependent demagnetizing factors found by means of the discrete summation
are identical to those found in continuum approximation [50]. It was pointed out that
the combination of these two effects in nanoplatelets could be especially dramatic for
ultrathin systems with a spin reorientation transition [49].

2.5.2 Spin Reorientation Transition

The magnetic anisotropy is a local property and constant for a given thickness.
Thus, it can be represented by a straight line in Fig. 2.9. The intersection of ED(k:, t)
and F 4 gives a critical length Lo = ko -t where the magnetization orientation switches,
i.e. reorientation appears. As the shape anisotropy in ellipsoid approximation deviates
from unity only at k &~ 1 the reorientation can happen only at L ~ t (Fig. 2.9). Thus, it
is commonly assumed that the orientation of magnetization in structures with L >> ¢
depends only on the thickness and the temperature of the sample.

However, the shape anisotropy of nanoplatelets, according to the investigations [49,
50], is reduced for certain lattice symmetries. The reduction of Ep(k,t) should lead
to an enhancement of the effective perpendicular anisotropy Ee;p = E4 — ED(k,t)
with shrinking size and, hence, to the increase of the Ls. For certain range of E4 the
critical size Lo of the reorientation can be very large compared to the film thickness.

Monte-Carlo simulations have been performed to check how the discreteness of
the lattice reflects in the orientation of the magnetization [52]. In an extension of
the earlier work [49], noncollinear spin states due to thermal disorder have been
considered, and the temperature-driven magnetic reorientation is discussed in view of
the different temperature dependence of dipolar and magnetic anisotropy energies.

The Hamiltonian of the problem includes exchange, dipolar interactions and per-
pendicular anisotropy of the first order: H = £.,+&p+&4. The ratio D/J ~ 1073 used
in the calculations corresponds to real materials. Hence, no rescaling of the sample size
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has been used. For the chosen D a single-domain magnetization configuration in the
samples is expected. In that case the exchange energy for in-plane and out-of-plane
configurations is identical and the magnetization orientation is fully described by the
competition between Ep and Ej4.

The low-temperature magnetic microstructure in samples of sizes 100a < L <
350a, where a is the lattice parameter, have been investigated. Thus, the lateral size
of the platelets has been chosen to be much larger than the thickness ¢ (L > 100¢). A
wide range of the total anisotropy energy has been explored. Here the case where E4
is slightly smaller than 27rM32, i.e. E4 = 0.9 - 2rM32 is described. In the continuous
ellipsoid approximation the selected sizes and anisotropy let expect any shape effects
to become effective at Lo &~ 20t. Hence, in all calculated structures with L > 100f an
in- plane magnetization configuration should be expected.

In contrast to the predictions
made in the framework of the con-
tinuum approximation a vertical
monodomain state in the case of
objects with L < 230t on a tri-
angular lattice is found (Fig. 2.10,
left). In case of L > 300¢ an in-
plane configuration of magnetiza-
tion exists (Fig 2.10, right). For
230t < L < 300t structures with
an intermediate values of vertical
component of magnetization have
been revealed. For the square lat-
tice the results are completely dif-
ferent. We find for all structures
with L > 100t an in-plane single
domain in accordance with the el-
lipsoid approximation.

Figure 2.10: The low temperature magnetic mi-
crostructure of two discs on triangular lattice with,
L1=100 and Ly=330; E4 = 0.9(2rM2). The ex-
change, the anisotropy, the dipolar energy constants By comparison with the trian-
and the temperature are identical for both samples. gular lattice we see that the crit-
For the sake of an appropriate representation a per- ical size of the reorientation L¢
spective view of an enlarged part of each sample depends on the type of the crys-
is shown. For clarity, only one spin row out of talline lattice. According to [49]
two is drawn as cones. The smaller island has a the shape anisotropy of a triangu-
vertical single-domain structure. The larger struc- |ar lattice with hep or fee stacking
ture presents an in-plane single-domain magnetiza-
tion configuration.

is strongly reduced, while Ep(k,t)
of a square lattice with sc stack-
ing is almost equal to that of continuum. Thus, in contrast to the analyt-
ical assumption and in accordance with the numerical approach [49] the crit-
ical size of the reorientation Lo depends on the type of the crystalline lat-
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tice and in some cases takes place far beyond the k-range deduced from
the ellipsoid approximation. Another important conclusion is that the magnetization
direction can change by shrinking the lateral size without changing parameters like
thickness or temperature.

The demagnetizing and the
anisotropy energy of non-collinear Ea(non-relaxed)
due to the thermal agitations MC
configurations have been studied 0.90
by taking advantage of the Monte-

Carlo scheme that permits the

ED(non-reIaxed)

Ex(relaxed)

introduction of temperature ef- 5=, Y Gttt —TlEET 7
fects into the calculations in [52]. %_ | e
Fig. 2.11 gives Ep(L) and E4(L) of & 085 Ep(relaxed)
. . L
platelets on a triangular lattice for
strictly collinear and relaxed solu-
tions.
L
Generally, the dipolar and the 0.8 . c2 LCl_
. ) 50 100 150 200 250
anisotropy energy of the relaxed
solution are smaller than those of L[a]

the collinear case due to the ther- Figure 2.11: Comparison of the demagnetizing
mal disorder. Interestingly, the Ep(k,L) and the anisotropy Fa energy of disc on
anisotropy energy of the MC con- a triangular lattice as a function of size for strictly
figurations is no longer a constant, collinear and relaxed solutions. All energetic param-
but is size dependent. As a con- eters J, D, Kj are identical in both cases. The energy
is normalized with respect to 2w M2, kT/J = 0.05,
D/J = 1073, The vertical lines denote the critical
sizes L1 and Lo of the magnetization reorientation
for collinear and non-collinear configurations

sequence Lo is shifted to smaller
sizes with respect to the collinear
case (Fig. 2.9). However, the crit-
ical size of the reorientation is still
dependent on the lattice type and can be very large comparably to the thickness of
the sample. This indicates that the size-dependence of the reorientation transition in
discrete lattices is not due to the shape effect of the continuous model that depends
on the ratio of the object dimensions. The effect found for the monolayer example
may be even more pronounced in thicker samples due to the thickness dependence of
the demagnetizing energy of a platelets on a discrete lattice [49].

For E4 ~ Ep(continuum) the size-dependent reorientation of magnetization will
appear only in the platelet on a square lattice. The magnetization of a nanoplatelet
on a triangular lattice will be always out-of-plane as the maximal possible shape
anisotropy of a sample is smaller Ep(L — oo0) ~ 0.91 - 2rM2. The effective per-
pendicular anisotropy of a triangular lattice, however, will increase due to the shape
and the lattice dependence of ED(k, t). This is sometimes erroneously interpreted as
the increase of Perpendicular Magnetic Anisotropy with shrinking size, as ED(k;,t)
is commonly assumed to be constant. First experimental findings pointing into this
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direction have been published recently [53].

In conclusion, we demonstrate that in laterally confined ultra-thin magnetic struc-
tures the magnetic behavior depends on the type of the lattice and the sample size.
As a consequence, the spin reorientation transition in small platelets of identical
shape on different lattices occur at different sizes for identical anisotropy energy. For
Ep(k,t) < Ep(L — oo) the reorientation from an in-plane configuration for larger
sizes to an out-of-plane configuration below a critical size Lo occurs. Lo can be
very large compared to the film thickness.We have shown that an enhancement of the
effective perpendicular anisotropy E.¢; can occur with shrinking size.

2.6 Dipolar Magnetic Anisotropy: Multiplicative
separation of discrete and continuum contri-
butions

To check previous numerical results concerning the separation of the total de-
magnetizing energy in the discrete and the continuum contribution the analytical
formulae for the demagnetizing factors of circular cylinders has been derived [50].
New closed-form analytic expressions for the demagnetization factors Nuya(k) and
Ngiam(k) = [1 — Naxial(k;)} /2 for the right circular cylinder in the usual micromag-
netic sense, i.e. in the continuum limit of micromagnetism, have been obtained. The
expression for Nuyai(k) is listed below

4, 2R 52 )
Naxial(k) = 14+ —Fk — = 2.5
1(F) 3 Tt (2:5)

There is no need to tabulate this function, because the hypergeometric Gauss
function o F}(a, b; ¢; z) is built-in into widely spread computer-algebra packages and is
actually a shorthand notation for an infinite convergent series. In the context of very
flat cylinders, as is the case for the ultrathin-film cylindrical platelets, large values
of kK > 1 are of interest. Although the relevant results based on calculations of the
inductance of cylindrical coil have been available for quite some time now [54], the
formula provided under Eq. 2.5 is the first time that the demagnetization factors of
the saturated zero-susceptibility cylinders are expressed in terms of the hypergeometric
function. Notably, it covers the whole range of possible values of k& (0 < k < 00); in
particular, one does not need to examine separately the thin (long) as opposed to the
flat (short) cylinder.

From this, we have obtained straightforwardly the dipolar magnetic anisotropy
energy density (shape anisotropy) depending solely on the shape of the cylinder as
specified by the geometric ratio k = % = diameter to thickness. The expressions are
superior to the usually quoted formulas in terms of the complete elliptic integrals. The
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very important finding is that

A Ejipolar (discrete)
X

= A Ejipolar (continuum) = S(k) (2.6)

to within a very high accuracy (the small deviations in the third digit of the discrete
result are certainly a numerical artifact) in agreement with the numerical results [49].
Equivalently, the identity of the two quantities can be established by comparison of
N(k) and of [3Naxiat(k) — 1]/2 . The function S(k) is a universal function of the
geometry ratio. At this stage, it has been proven that the following form holds for the
discrete mesoscopic system:

po M3
2
Altogether, it has been shown that the exact finite summation of the dipolar sums
for an essentially discrete dipole lattice, as is encountered in experimental situations
in ultrathin ferromagnetic platelets, leads to a clear delineation of the validity of the
micromagnetic continuum ansatz and the quantitative way in which the discreteness
of the lattice bears on the final result for the MAE density.

A FEgipolar (discrete) = X ({lattice}, t)S(k) (2.7)

2.7 Summary

A microstructure of thickness- and size-driven spin reorientation transition in ul-
trathin films and nanostructures has been discussed. It has been demonstrated that
the results of numerical Monte-Carlo investigations showed an astoundingly good
correspondence with recent experiments and led to a microscopic understanding of
the spin reorientation transition in the first- and the second-order magnetocrystalline
anisotropy approximation.

It has been demonstrated that in first-order anisotropy approximation a continuous
reorientation transition occurs from an out-of-plane magnetization to a vortex struc-
ture. At the point where the dipolar energy is equal to the perpendicular anisotropy en-
ergy a new phase, the twisted configuration represents the minimum of the free energy.
The second-order perpendicular anisotropy strongly influences the microstructure of
the spin reorientation transition. For Ky > 0 a transition via a canted domain struc-
ture is established that yields a smooth, continuous connection between the vertical
domain structure and the vortex structure with in-plane magnetization. For Ky < 0
a continuous reorientation via a state of coexisting vertical and in-plane magnetized
domains occurs. The sizes of the vertical and the in-plane domains depend on the
ratio of K ff I and K,. The spatial arrangement of the domains can change with time,
while the frequency distribution of the in-plane and the vertical phases is invariable.

It has been shown by means of strict calculation of the dipolar lattice sums that the
shape anisotropy of ultra-thin magnetic nanoplatelets differs from that of continuum
ellipsoid- approximation. The superposition of thickness- and improved shape-effect
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leads to a new phenomenon: size-dependent reorientation of magnetization. Critical
size of the reorientation can be very large compared to the film thickness.



Chapter 3

Anisotropic Domain Walls in
Magnetic Nanostructures with
Perpendicular Anisotropy

3.1 Introduction

The microscopic and macroscopic physical properties of a magnet - hysteresis,
magnetotransport and magnetooptical properties, excitation spectrum etc. - in many
respects are determined by the configuration of magnetization [55-58|. Therefore, mag-
netic ordering on different length scales is one of the central questions of magnetism.
Magnetic domains play an especially important role for the physics of magnetism. The
understanding of the influence of the domain structure on the magnetic behavior in
nanomagnets is of high significance for the fundamental physics of magnetic materials
as well as for technological applications.

The size of domains in magnetic systems on all length scales is driven by the
competition between the magnetocrystalline, the shape anisotropy, and the exchange
energy. For given energetic parameters (and therefore a given domain size) a system
may gain some additional energy which aligns the domain walls in one or in another
crystallographic direction. The optimum orientation of domain walls in bulk materials
is determined by the minimization of the magnetocrystalline and magnetostatic energy
density [59]. As the walls in that case are planes a ”wrong” orientation of a wall can
lead to significant losses in the anisotropy energy and/or to significant stray fields. In
laterally confined nanomagnets the magnetic shape anisotropy comes into play [60]. We
take as example a thin rectangular magnetic sample shown in Fig. 3.1. If the density
of domain walls is low the orientation of the walls is governed by a minimization of
the total wall length, i.e., the walls should generally be oriented perpendicularly to
the sides of a rectangle. If the wall density is high, the total length of the walls is
almost identical for the longitudinal and the polar orientations. Therefore, the least
energetically costly solution is to orient the domain walls either parallel to the long

27
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Figure 3.1: Schematic representation of two possible orientations of Bloch domain walls

in a magnet of rectangular shape with perpendicular anisotropy for high wall density. The

white regions are domains, the light grey regions - walls. The arrows give the orientation
of magnetization. The dark grey areas denote uncompensated magnetic poles.

side of the rectangle, or concentrically. This is since such configurations will lead to
a minimization of free magnetic poles on the sides of the sample [60] (see Fig. 3.1).
Hence, as for high as for low wall density the orientation of domain walls is strongly
dependent on the shape of a magnet. If the magnet as a whole will be rotated the
domain walls should rotate together with it in order to preserve the relative orientation.
An exciting question is whether the orientation of domain walls in the ultrathin film
limit obeys the same principles?

3.2 Experiments

One experimentally accessible and, for future applications, very perspective geo-
metrical shape is a so-called nanowire - a quasi one-dimensional structure of infinite
length and lateral dimensions on the nanometer scale. The nanowire geometry is par-
ticularly advantageous for the investigation of the orientation of domain walls as it has
very strong shape anisotropy, ¢.e., similarly to the previous example the walls should
generally be oriented perpendicularly or parallel to the sides of a wire depending on
the wall density. In many cases the wall density in turn can be tuned by the width of
the wires [61]. The narrower the wires the lower the density of walls.

For many experimental systems, e.g. Fe/Cu(100), the shortest wall-path coincides
with one of the crystallographic axes which makes it impossible to distinguish between
the role of the lattice for the domain formation and other effects. Only if the shortest
distance is different from all principal axes of a lattice can the mechanism underly-
ing the orientation of the domain walls be revealed in case of a small wall density.
A suitable and experimentally well-studied model system are double layer (DL) Fe
nanowires on stepped W(110) [61, 62] being characterized by perpendicularly magne-
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Figure 3.2: (a) Topography and (b)-(d) dI/dU maps of of 1.7 ML Fe/W(110) at different

local miscut orientation. (a) and (b) were recorded simultaneously. The lateral scale is the

same in all images. In all cases, domain walls (white lines) are oriented along [110], regardless

of the orientation of the nanowires. Parameters: U = 5mV, I = 0.5nA, T' = 75K (b, ¢)
and 120K (d).
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tized domains separated by domain walls. Fe/W(110) nanowires are extending along
the substrate step edges. As the step edges of the W-surface can have different crys-
tallographic orientations the spatial orientation of the magnetic nanowires can also be
different.

Scanning tunneling microscopy on areas with different local miscut orientations
[63] reveals that the domain walls do not show conventional behavior, i.e. they do not
rotate together with wires but are always oriented along the [110] direction, regardless
of the orientation of the nanowires [63] . Figure3.2 shows the topography (a) and
maps of differential tunneling conductance (b-d) of 1.7ML Fe/W(110). While the
dI/dU map of Fig. 3.2(b) has been measured simultaneously with and at the same
position as the topographic image, the d//dU maps of Fig. 3.2(c) and (d) show other
areas of the same sample which exhibit different local miscut orientations. The maps
of the differential tunneling conductance correlate with the local density of states
directly under the tip and provide information about the magnetic polarization of
the sample. The double layer nanowires shown in Fig. 3.2(a,b) extend approximately
along [001], the ones in Fig. 3.2(c) along [110], while in Fig. 3.2(d) the wire direction
is intermediate, roughly along [111]. Due to unequal diffusion energies the Fe stripes
grow smoothest along [001] and least smooth along [110]. After initial pseudomorphic
growth the high tensile strain starts to relax by insertion of dislocation lines in the Fe
double layer which run along the [001] direction. These are imaged as narrow black
lines in the d7/dU maps. The double layer nanowire has a periodic magnetic structure
with out-of-plane domains alternatingly magnetized up and down. These domains are
separated by 180° in-plane domain walls, which are imaged as white lines in this
experiment. The typical distance between adjacent walls is 23 +2nm [61]. Regardless
of the direction of the nanowires the domain walls run along the [110] direction, i.e.,
perpendicular to the dislocation lines. As a consequence, the domain walls within
the nanowires are infinitely long in the case of Fig. 3.2(c) (disregarding interruptions
due to structural imperfections), and very short in case of Fig. 3.2(b) where they run
perpendicular to the axis of the nanowire. More than that, the predominant [110]
direction is not even a principal direction of an ideal bec-lattice as it does not coincide
with the primitive vectors of the bee-structure. This anisotropic behavior can be found
as in the regime of the high wall density as for the low density of domain walls.

Another experimental system with perpendicular magnetization for which an
anisotropy in the domain wall orientation was observed in the ultrathin limit is
Co(0001) films grown on a Mo(110) buffer [41]. The preferred domain wall direction
has been found to be parallel to the [001] direction of the Mo buffer which corresponds
to the [1120] axis of the hep-Co. In many other ultrathin systems, e.g. Co/Au(111) a
completely isotropic distribution of domain wall orientations has been reported [37].

Thus, the orientation of domain walls in ultrathin nanomagnets is at variance to
their mesoscopic and bulk counterparts and at first glance seems to be rather perplex-
ing. While in ultrathin Fe/W(110) and Co(0001)/Mo(110) magnetic structures the
walls are anisotropic, they are fully isotropic in Co/Au(111) films in the same thick-
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ness range. In addition, the anisotropy in the wall orientation cannot be explained
by the minimization of the shape anisotropy as the orientation of walls is indepen-
dent of the orientation of a nanomagnet. In the following a systematical analysis of
orientational wall dependency in nanomagnets on different lattice structures will be
presented.

3.3 Theoretical Analysis: Isotropic Exchange
Integral

To gain understanding of the unusual adherence of magnetic walls to certain crys-
tallographic directions in Co/Mo(110) and Fe/W(110), and of the complete disregard
of the crystallographic symmetry by these walls in Co/Au(111), Monte Carlo simula-
tions and phenomenological analysis have been performed of the orientation of domain
walls in ultrathin films with different atomic symmetries and perpendicular magnetic
anisotropy [63, 64]. In the first set of calculations the exchange constants between all
pairs of nearest neighbors are supposed to be identical.

3.3.1 Monte-Carlo Simulations

The Monte Carlo (MC) description of the magnetic ordering is fully stochastic. It
is based on minimization of a system Hamiltonian by performing statistical sampling
experiments on a computer. In the popular Metropolis algorithm during one MC step
every magnetic moment tries to make a rotation into a new, randomly determined
orientation. This new orientation is accepted or rejected on the base of the Boltz-
mann probability [65]. A properly equilibrated MC system satisfies the fluctuation-
dissipation theorem. Hence, the temperature effects are naturally included in the
calculations. Modern MC computational schemes are able to describe large systems
consisting of many tens thousands of atoms [3, 4, 23, 58, 60, 66, 67]. The long-range
magnetostatic interactions and all kinds of anisotropy can be incorporated into the
model Hamiltonian with reasonable efforts. A large advantage of the MC approach is
that a discrete lattice structure of a specific material can be introduced into the cal-
culations. Introduction of lattice symmetry provides a unique opportunity to account
for the effects arising from the discrete nature of matter [23-25]. Due to these advan-
tages MC simulations have been successfully applied for many structural phenomena
such as magnetization reversal, domain or vortex formation, and spin reorientation
transitions [23-25]. Since magnetic ordering is a complicated many-body problem,
driven by minimization of the total energy, this method is extremely powerful for the
description of magnetic domain structures.
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The system Hamiltonian reads:

H == JuySi-S;
<1,j>
S;-S; (S;-1y) (S; - 135)
D I3 AR 3.1
- 2}( " ) (3:1)

+ klzsin29+k225m4«9
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where Jju1y denotes the effective nearest neighbor exchange coupling constant along
different bonds, D is the dipolar coupling parameter, 6§ and ¢ are the spherical angles
and rj; the vector between sites ¢ and j. The coefficients k; and ky are the first- and
second-order anisotropies per atom, respectively. £, is an in-plane anisotropy per atom.
The in-plane anisotropy can have any angle 3 with respect to the z-axis. For the MC
computations one or two layers of classical, three-dimensional magnetic moments S
on different surfaces of sc, fcc and bee lattices of about 20000 effective magnetic sites
have been considered. The MC procedure is described elsewhere [23]. A realistic ratio
of the exchange and the dipolar constants D/.J = 1072 has been used. First the case
will be discussed where exchange constants between all pairs of nearest neighbors are
identical. The anisotropy constants have been widely varied in the regime of vertical
and in-plane magnetization. The best agreement with the experimental results [63]
(domain width of 20-25 nm and wall width of 6-9 nm) give constants corresponding to
an anisotropy energy density K; = (1.6-2.0)- K4, Ky = (0-0.7) - K4, K, = (0-0.6) - K4
with Ky = 2rM? the shape anisotropy. The value of the out-of-plane anisotropy is
K, =(221) K,

Fig. 3.3 shows typical MC low-temperature domain configurations found for thin
films with sc(110), bee(110), fee(110) and fec(100) surfaces, while Fig. 3.4 gives the
structure of the corresponding unit cells. The domain walls in s¢(110) films are mainly
oriented along [001], while the walls in bcc(110) films are oriented along the [110] direc-
tion (Fig. 3.3 a,b and Fig. 3.4 b,c). The domain walls of fcc(110) films (Fig. 3.3c and
Fig. 3.4d) are more disordered and can run along [110], [112] or intermediate crystallo-
graphic directions. However, one never finds a [001] orientation. The domain pattern
of an fec(100) film, shown in Fig. 3.3d, is completely disordered. All possible orienta-
tions of domain walls can be found in the magnetization configuration. Similar results
have been obtained for all other surfaces of cubic crystals. Thus, for isotropic exchange
interactions the orientation of domain walls of (110) surfaces of cubic crystals is highly
anisotropic, whilst this is not the case for the (100) and (111) surface orientations.
Those results are consistent with experiments where anisotropic wall patterns have
been found for bee(110) surfaces [41, 63] while a disordered configuration has been
revealed for an fcc(111) film surface [37]. Why it happens? To answer this question
all energy contributions should be analyzed separately.



(a) "
C
N

~

3.3. Theoretical Analysis: Isotropic Exchange Integral 33
———— I

"l )
[110]
(Cw -
0011l Q ,

[010]

[112]

Figure 3.3: Top-view of MC domain configurations in 600 nm large and 2 ML thick samples

with: sc¢(110) (a), bee(110) (b), fee(110) (c) and fee(100) (d) surfaces. Opposite domains

are imaged as dark and light areas. Exchange interactions are isotropic, k7" = 0.05J,

K; = 9-1073J. Upper directions correspond to (110)(a-c) while bottom to (100) (d)
surface.
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Figure 3.4: Schematic top view of a Bloch wall, the magnetization is represented by

arrows (a). Top view of the unit cell of 2 ML thick sc¢(110) (b), bee(110)(c), fee(110)(d)

and fcc(100)(e) films. Dark and light balls denote the atoms belonging to the first and the

second layer correspondingly. Nearest neighbor bonds are shown as connections between
the atoms.
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3.3.2 Magnetocrystalline and Shape Anisotropy

To check whether the shape and the magnetocrystalline anisotropy can influence
the orientation of magnetic domain walls several parameters have been widely varied in
the simulations. First, the uniaxial anisotropy constants k; and k5 have been changed
in the regime of vertical magnetization. The thickness of domain walls decreases with
increasing absolute value of k; and/or ky. However, the orientation of domain walls
is not influenced by the perpendicular anisotropy. The reason for such behavior is a
strong reduction of the shape anisotropy in monolayer thick nanomagnets with (110)
surface symmetry as has been demonstrated recently [49, 50]. As a result the gain in
the shape anisotropy due to reorientation of domain walls at thicknesses ¢t < 4 ML is
negligibly small, 7.e., in contrast to thicker magnets described in the Fig. 3.1 the shape
and the uniaxial vertical anisotropy cannot govern the wall orientation.

Next, an additional in-plane anisotropy k, has been strongly varied in the regime
of vertical magnetization for different sample shapes [63]. Fig. 3.5 shows a portion of
an elongated nanowire of rectangular shape with a low wall density. Increase of the
in-plane anisotropy only leads to an alignment of the magnetization within the wall
with no consequences for the wall direction. This happens for a similar reason as in
the case of a uniaxial perpendicular anisotropy. The wall cross sections are so thin,
that their charging due to the strong in-plane anisotropy leads to only a very weak
stray field, which is insufficient for the reorientation of walls. This shows that the
mechanism of wall orientation described here is distinct from the one observed in bulk
and mesoscopic magnets, which is often governed by the magnetic anisotropy and the
dipolar energy.

Figure 3.5: Top-view of a simulated
nanowire sections of 20 nm width with
a small density of domain walls. Black
(red) and dark-grey (blue) areas denote
up- and down-magnetized domains cor-
respondingly. The magnetization is
represented by arrows. White contrast
gives the orientation of domain walls.
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3.3.3 Exchange Energy

While in the atomistic approximation the exchange energy is often described by
the Heisenberg Hamiltonian (see Eq. 3.2) with exchange integral Jy; as an interac-
tion parameter, in a continuum theory a so-called exchange stiffness tensor A is used
instead. The exchange stiffness relates the exchange integral with the symmetry of a
lattice: A = % - ¢, where ¢ = 1 for the primitive cubic lattice, ¢ = 2 for the bcc
lattice and ¢ = 4 for the fcc lattice [68].

Orthorhombic-like Symmetry

For lattices with cubic symmetry A is isotropic. For orthorhombic lattices with
a translation vector T = ha; + kas + lag where h # k # [ are generally non-
equal integers and a;, as, ag is a set of three linearly independent vectors, A may be
anisotropic in spite of the isotropy of Jyx; constants. The reason is the proportionality
of the components of the exchange tensor Ay to the absolute values of a; = hay,
as = kag and a3 = lag [68]

2 2 2 2 2,52
= JhSCh #F Ay = JkSGQ # A= hS

o3 aijas a1a9

Ap as . (3.2)

It has recently been demonstrated [69] that an anisotropy of the exchange stiffness
tensor can lead to the anisotropic orientation of the domain walls in bulk orthorhombic
materials. At first sight this theory is not applicable to the case of double layers with
lattices of perfect cubic symmetry.

However, let us look more closely the unit cells of different surfaces described in the
Section 3.3.1. What is the main difference between the (110) surface of a 2 ML thick
film and all others? While the basis of all non-(110) surfaces is a square, the basis of
(110) surfaces is a rectangle (see Fig. 3.4). This happens because the (110) surface is
a diagonal plane of a cube. If a film is only two monolayers thick such a symmetry
can be regarded as a part of an orthorhombic Bravais cell with a translation vector
T = ha; + kag + lag with h # k # [, where h and k are the sides of the rectangular
base. Therefore, the exchange stiffness parameter of (110) surfaces is anisotropic,
whereas all other surfaces have an isotropic A. In thicker films the cubic symmetry
of the lattice structure with fcc, sc or bee stacking is restored. All three unit vectors
become equal and the anisotropy in the orientation of magnetic domain walls induced
by the orthorhombic-like symmetry of ultrathin films disappears.

Thus, the orthorhombic-like symmetry explains qualitatively an anisotropic distri-
bution of domain walls in ultrathin films with (110) surface. Quantitative predictions
of preferential wall orientations can be made on the basis of a phenomenological model
developed in [64], which will be described below. Both methods give identical results
which are consistent as with the Monte Carlo simulations as with experiments [37, 63].
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Phenomenological Model

Fig. 3.4 shows a top-view of a conventional Bloch wall (a) and unit cells of a
double-layer with an sc(110) (b), a bce(110) (c), a fce(110) (d) and a fec(100) (e)
crystalline lattice. Atoms are sketched as balls where dark ones belong to the surface
and light balls to the subsurface layer. Connections between atoms indicate nearest
neighbor bonds. From Fig. 3.4(a) it is clearly visible that the magnetization rotates
along an axis perpendicular to the plane of the wall while magnetic moments belonging
to planes which are parallel to the plane of the wall are parallel. Since in a ferromag-
net neighboring spins hold the lowest energy when they are parallel, the loss in the
exchange energy due to the wall formation results from the bonds which have non-zero
projection on the direction perpendicular to the course of the wall. For example, if the
wall is oriented along the [010] direction of the fec(100) surface (Fig. 3.4e) the mag-
netic moments connected by [010] bonds will be parallel while moments connected by
[001] bonds will have a maximal possible mutual angle and, consequently, a maximal
increase in the exchange energy AE; % The moments connected by [011] and [011]
bonds will have intermediate mutual angles as they are neither parallel nor perpendic-
ular to the direction of energy loss. It means, that the local increase in the exchange
energy due to the magnetization rotation in a domain wall will be proportional to the
projection of an atomic bond on the axis perpendicular to the wall orientation.

To obtain losses in the exchange energy due to formation of a domain wall in this
model, in a first step projections of all bonds to the axis perpendicular to the plane of
the wall (P i) were calculated for single and double layers of (100), (111) and (110)
surfaces of bee, fee and sc crystals. The nearest neighbor bonds have been assumed to
be of unit length. The length and the number of projections P, (1 for double layers
with (110) surface are brought together in Table 3.1. The loss in the exchange energy
per unit cell for a wall along one of the [hkl] directions has then been calculated by
summing up the exchange coupling constants (Jjuk = 1.0) multiplied by P for
all bonds in the unit cell:

AEBhkl] la.u./unit cell] = Z Jinkt) + PLiofhky -

For a wall along [112] of an fcc(110) lattice, for example, this results in (see also
Table 3.1):

- 2 2 1
AE[”%:s-\ﬁ 4.4/244. — =574 [au)] .
7 3+ 3—|- 12 [a.u.]

The exchange energy of a domain wall per unit cell is smallest for the [110] direc-
tion of the bee(110) and for the [001] direction of the sc¢(110) surface. In case of an
fce(110) crystal two orientations have similar energy. These are the [112] direction
with AE;"? = 5.74 and [110] with AE;'" = 5.65. Hence, the exchange energy cost
in the systems described above is orientation dependent. The preferential orientations
of walls derived in the phenomenological model are [110] for bee(110) and [001] for
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Table 3.1: AEBhkl] and the projections of nearest-neighbor bonds onto the direction perpen-
dicular to the plane of the domain wall for double layer films with (110) surface orientation.

Stac- | Wall orien- AEBhkl] / Pioppin® of bonds
king | tation [hkl] | unit cell [a.u.] running along
[001](4)  [110] (4) [111] (8)
bee [001] 8.52 0 %5 5
(110) [110] 6.00 % 0 %
T 1 V3 1
[111] 6.76 % 3 U
[110](3) [112](4) [112](4)
fee [001] 7.00 1 3 3
(110) [110] 5.65 0 % 5
[112] 5.74 @ \/g -3
sc [001)(2) [110](2)
(110) [001] 1.41 0
[110] 2.00 10

& Number of bonds per unit cell is given in brackets.

sc(110) crystalline films. For fec(110) the wall orientation is defined by the competi-
tion between [110] and [112] directions. The cost in the exchange energy AE ;" for
other surfaces is constant and does not depend on the wall orientation. Hence, for
[001] and [111] surfaces of a cubic crystal the domain walls are predicted to have no
preferential orientation. The results described above give a quantitative measure of
the orientation dependent exchange energy loss due to formation of a domain wall.

3.4 Theoretical Analysis: Anisotropic Exchange
Integral

As has been shown in the previous Section magnetic domain walls are anisotropic
in ultrathin films with (110) surface orientation. In case of ideal lattice structures this
anisotropy comes from the orthorhombic-like symmetry of an incomplete cubic cell.
Real materials grown on a substrate, however, almost never have an ideal structure
because of the lattice mismatch. For the example of Fe/W(110) the first two Fe layers
grow pseudomorphically and adopt the lateral lattice constant of tungsten, which
is about 10% larger than that of bulk iron. As a consequence, the Fe-Fe interlayer
distance relaxes below the Fe bulk value [70]. This leads to a change of the interatomic
distances. Namely, the neighbor distance in the [110] direction, marked red in Fig. 3.6,
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decreases to a value close to the nearest neighbor distance in bulk iron, and the spacings
in [111] and [111] direction (blue) are increased. Hence, instead of six nearest neighbors
as in an ideal, 2 ML thick bee(110) film, in Fe/W(110) all atoms have eight bonds of
similar length. Following Ref. [70], the respective distances in units of the lattice
constant of bulk Fe are dgg; = 0.95, dy7; = 1.10, and d;79 = 1.15.

[001] _
[111] (b)  [001] [111]
[110] L>[110]

(a) [111]

o0 O

Figure 3.6: Unit cell of 2 ML Fe/W(110) in (a) top and (b) perspective view. Blue and
black lines denote the nearest neighboring bonds in an undistorted, ideal crystal. Red lines
denote additional nearest neighboring bonds due to relaxation.

As follows from the Eq. 3.2, the anisotropy of the exchange stiffness parameter
A may come not only from the orthorhombic-like lattice symmetry but from the
anisotropy of the exchange integral Jju as well. The exchange integral is very sen-
sitive to the nearest neighbor distance. Hence, the lattice mismatch in real materials
may also lead to anisotropic effects. In the literature the calculation of Jyu as a
function of relative position rj; of the magnetic moments ¢ and j has been performed
for several ferromagnetic materials [71, 72]. These calculations show that the strength
of the exchange coupling is a function of rj;. Especially interesting is the behavior
of J(ry) in Fe. For Fe a reduction in nearest neighbor spacing dyy with respect to
the bulk value drives the exchange towards antiferromagnetism. This effect has been
made responsible for the fact that fcc-Fe is antiferromagnetic while bee-Fe is a ferro-
magnetic material [73, 74]. This argument is also supported by the position of Fe on
the Bethe-Slater curve, which is widely used in the physics of ferromagnetic alloys [74].
Thus, a decrease of the interatomic distance in [001] direction can lead—in contrast
to other ferromagnets—to a reduction of the ferromagnetic exchange parameter.

For Fe nanowires on W(110) the situation is even more subtle due to hybridization
and polarization effects at the Fe/W interface. All the more interesting is the advance,
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described in very recent studies [75, 76|, where the exchange stiffness of Fe films
adsorbed on a W(110) surface has been calculated. The authors find that for a bece
lattice the exchange stiffness Ay, = 2J5%/a , depends on the direction along which the
spin-wave is excited. For one monolayer Fe/W(110) the exchange stiffness in the [110]
direction is 4 times larger than in the [001] direction [76]. For a 2 ML film the difference
is found to be smaller but the tendency remains the same. The physical reason for
this anisotropic behavior can lie in changes of interatomic spacing, as discussed above,
or in additional indirect spin interactions through the W substrate [76]. In any case,
the dependence of the exchange interaction on rj; must be taken into account in the
simulation of the magnetic ordering. This is especially important if other effects can
influence the orientation of the domain walls.

An example of such a situation is provided by narrow Fe/W(110) nanowires having
low wall density. In this case the wall orientation can be determined apart from the
anisotropic exchange stiffness by the minimization of the wall length. If the shortest
path does not coincide with the preferential direction for the exchange stiffness the
two effects compete. This happens for [111] oriented, 20 nm wide Fe nanowires. The
shortest distance lies perpendicular to the sides of the wires, while exchange stiffness
prefers the [110] orientation. For isotropic exchange constants a typical Monte-Carlo
configuration in narrow nanowires consists of walls which are neither perpendicular to
the sides of a wire as expected from the minimization of the wall length nor parallel to
the easy [110] direction as expected from the orthorhombic-like lattice symmetry. The
domain walls are mainly oriented along an intermediate [111] axis. In case of narrow
[001] or [110] oriented wires the domain walls run perpendicular to the wire sides, i.e.
the length minimization wins.

In the next set of calculations three different exchange constants Jpy for the 3
nonequivalent pairs of neighboring magnetic moments have been introduced. Different
ratios of Jiig : Ji11 : Joo1 (red, blue and black bonds in Fig. 3.6, respectively) have
been explored. The best overall accordance with the experiment is found for Jii :
Jinr : Jooo = 4 : 2 : 1 (Fig.3.7(b) and (c)). For [111] nanowires (Fig. 3.7(b)) the
majority of the walls follow the [110] axis. However, [111] walls can also be found.
For [110] nanowires of 40 nm width (Fig. 3.7(c)) [110] oriented domain walls have also
been obtained. The walls are not perfectly straight but show some irregularities. For
example, the wall is forced out of the [110] direction at the rim of the nanowire. A
similar behavior has also been found experimentally (see circle in Fig. 3.2(a)). Different
orientations and strengths of the in-plane anisotropy K, have been explored in [63]. As
already mentioned above the only effect of a strong K, is an alignment of the magnetic
moments in the wall along the respective axis and broadening of the walls. The
orientation of domain walls is not influenced by K, in accordance with the continuum
model (Fig. 3.7(a)), showing that the mechanism of wall orientation described here
is distinct from the one observed in bulk material, which is governed by magnetic
anisotropy and dipolar energy.
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Figure 3.7: Top-view of ex-
perimental (a) and simulated
(b),(c) Fe/W(110) nanowire
sections of 20 nm (a),(b) and
40 nm (c) width. Majority of
the walls run along [110] inde-
pendent on the orientation of
nanowires.

3.5 Summary

In conclusion, the orientation of magnetic domain walls in ultrathin films and nano-
magnets is strongly influenced by the atomic lattice structure. The exchange stiffness
tensor is anisotropic in mono-, double- and triple-layers with cubic structure and (110)
orientation of the film surface due to the orthorhombic-like lattice symmetry of the
incomplete cubic cells. The exchange stiffness for all other surface orientations of ideal
cubic crystals is isotropic. Apart from the orthorhombic like symmetry the exchange
stiffness can admit anisotropic character due to the anisotropy of the exchange integral
resulting from the lattice relaxation. The anisotropy in the exchange stiffness leads
to anisotropy in the orientation of magnetic domain walls. The magnetic anisotropy
and the magnetostatic energy which govern wall orientations in bulk material, play a
minor role in the ultrathin film limit.
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Chapter 4

Self-Competition of the
Long-Range Interactions in
Nanomagnets

4.1 Introduction

Various problems in the theory of nanosystems lead to the consideration of the
interactions amongst dipoles. Whereas in atomic magnetic materials the exchange
interaction usually dominates over dipolar interactions, the opposite happens in many
nanoscale particle or clustered magnetic systems, for which the interparticle interac-
tions are mainly of magnetostatic origin. Long-range magnetostatic interactions are
also at the heart of the explanation of many peculiar or anomalous phenomena ob-
served in systems of fine particles embedded in a nonmagnetic matrix systems, molec-
ular networks, colloids and rare-earth ions such as the 2D honeycomb magnets ErXs.
These demonstrate that magnetostatic interactions can be crucial in determining the
magnetic order at low temperatures. On the other hand, the long range nature of mag-
netostatic interactions inevitably leads to frustration — a spin cannot simultaneously
satisfy the conditions dictated by all the interactions. Depending on a system the mag-
netostatic interactions may contain mainly dipolar contribution, as so-called dipolar
magnets, or additional higher-order multipolar terms as nanomagnetic arrays. In the
following the details of the self-competition in the dipolar and multipolar systems will
be given.

4.2 Dipolar Interactions

The dipole-dipole interaction is described by the Hamiltonian

Egip=D_ (Si}s.sj 3BTl B rij)) , (4.1)

irj g "y

43
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2
where D = Z;’;g is the dipolar coupling parameter with o - permeability of the
vacuum, f, - magnetic moment of a particle, d - interparticle distance, S - the unit
vector and the relevant sum is running over all spin pairs ¢ and j defining the vector

r;.

4.2.1 Ising Moments on a periodic Lattice

In contrast to the isotropic exchange coupling the dipolar interaction has an
anisotropic character. This means that even in a simple Ising case the ground state
depends on the spatial orientation of the mag-

netic moments. If for example two Ising
(a) moments have only up- or down-orientations
with respect to a plane, the right part of the

Eq.4.1 becomes zero as the cosine of 90 de-
gree is zero. Therefore, the ground state con-
figuration is an antiparallel alignment of the
moments Fig. 4.1a with energy per moment
E4p = —1for D =1 and r;; = 1. For right-
(b) or left- orientations in the film plane, however,
the ground state is head-to-tail configuration

:D:D Fig. 4.1b with Eg;, = —3 as the right part of

the Eq. 4.1 is not zero any more.

On a square lattice, the dipolar interaction
between vertical spins corresponds to a long-
range antiferromagnetic coupling and there-
fore leads to an unfrustrated checkerboard
configuration. Fig. 4.2 shows Monte-Carlo
structures for vertical Ising moments on a tri-
angular lattice for two temperatures [20]. The configuration gives evidence of an
effective in-plane anisotropy linked with the underlying discrete lattice. At a local
size, an organization with parallel stripes of alternate spins occurs. At a larger scale
stripes become organized with chevrons and labyrinthine patterns, as already observed
in magnetic nanoarrays with uniaxial anisotropy [77] and magnetic liquids [78, 79].
With increasing temperature the zigzags and loops of complex labyrinthine structure
roughen and shorten. An in-plane Ising dipolar system on a square lattice is frus-
trated. The ground states for this case are shown in Fig. 4.3. These are a single
domain structure for a triangular and antiparallel stripes for a square lattice. The cor-

Figure 4.1: Ground dipolar states for

two Ising moments which are oriented

perpendicular (a) or parallel (b) to the
film plane.

responding energies per spin on an infinite lattice for D = 1 are E,i""" = —2.5494 for
the configuration Fig. 4.3a and E;:;angle = —2.7585 for the configuration Fig. 4.3. The

patterns of Figs. 4.1-4.2 appear because of the inability to form ideal configurations
of Fig. 4.1 for all pairs of spins, i.e. because of frustration.
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Figure 4.2: Pure dipolar coupling: por- Figure 4.3: Zero temperature ground
tion of 200x 200 vertical Ising spins on a tri- dipolar states for in-plane Ising moments on
angular lattice with labyrinthine patterns of a square (a) and a triangular (b) lattice.

up (black) and down (white) spin domains.
JFrom left to right: k7'/D = 0.05 and 0.2.

4.2.2 Vector Dipolar Moments on a Periodic Lattice

As it has been shown in the previous section in-plane configurations of mag-
netic/electric moments usually have lower dipolar energy than out-of-plane ordering.
This becomes even more evident in systems consisting of vector moments which are
free to choose any orientation in space. The pure dipolar systems on two-dimensional
lattices often demonstrate in-plane alignment of moments due to an anisotropy arising
from dipole-dipole interactions. In that case the XY and the Heisenberg models lead
to very similar ground states.

Another striking feature of the dipolar interaction is that it decreases slowly as a
function of the distance. As a consequence the dipolar field Hy;, (i) experienced by
a given moment S;depends significantly on the moments located at the boundary of
the sample and this results in the so-called shape anisotropy. The shape anisotropy
is usually calculated as a difference between the dipolar energy of a most unfavorable
and that of a most favorable configuration.

It is well known that the ground state of a dipolar system on a square lattice is
antiferromagnetic just as the in-plane Ising configuration. However, several studies
of this ground state demonstrated that the situation is more subtle than one might
initially suppose [80, 81]. The ground state of an infinite square lattice is highly de-
generate and defines a continuous manifold of spin configurations at 7' = 0, although
the dipolar coupling itself is not rotational invariant. The same is true for a dipolar
system on a honeycomb lattice. For zero temperature the spins lie in the film plane
but the ground state is continuously degenerate [82]. Examples of degenerated config-
urations are shown in Fig. 4.4. Configurations Fig. 4.4a,b have the same energy and
are both ground states for a dipolar honeycomb lattice. The right configuration is ob-
tained from the left one by the rotation of the sublattice A (red) by ¢ = +7/6 and the
sublattice B (blue) by ¢ = —7/6, i.e. p(Ra) — ¢(Ra)+ ¢ and o(Rp) — ¢(Rp) — ¢.
The same transformation has been performed for a square lattice Fig. 4.4c.d.
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Figure 4.4: Two examples of the class of continuously degenerate ground states
(¢ =0,7/6) of a dipolar magnet on a honeycomb (a-b) and a square (c-d) lattice.
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Figure 4.5: Pure dipolar coupling: top view of a portion of low-temperature

(kT = 0.05D) Monte-Carlo configuration on (a) a square lattice, (b) a honeycomb

lattice; (c) experimental dipolar model on a square lattice. The model belongs

to the physical collection of J. Kirschner at the Max-Planck Institute for the mi-
crostructure physics in Halle, Germany
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At finite temperatures the situation for the square
and the honeycomb symmetry is different. As has
been shown by Monte Carlo calculations and spin
wave theory, a magnetic ordering and a critical tem-
perature exists for dipole coupled spins on a square
lattice [81, 83|, since the magnetic and temperature
excitations are not continuously degenerate. In this
case a quartic shape anisotropy is present, the cor-
responding easy axes being the edges of the square
lattice. In other words, the density of states and thus
the entropy depends on the magnetic direction within
the lattice. This phenomenon is an example of the
order-by-disorder effect in frustrated magnets [83]. A
typical configuration obtained by Monte-Carlo simu-
lations for a finite square lattice at finite temperature
is given in the Fig. 4.5a. Lines of dipoles are observed
on the edges which are formed due to the pole avoid-
ance principle. The microvortex ¢ = 45° configura-
tion is formed in the center. Hence, the finite size
and temperature remove the continuous degeneracy
of the ground state. The Monte-Carlo data have been
recently confirmed by an experimental model made of
small magnets which are free to rotate in the XY-plane
(see Fig. 4.5b). The density of states on a honeycomb
lattice does not depend on a specific lattice direction
and the ground state is degenerate with respect to con-
tinuous rotations of opposite sense on both sublattices
[84]. Therefore, a low-temperature Monte-Carlo struc-
ture on honeycomb lattice shows different degenerate
states in the same sample (see Fig. 4.5¢).

What happens with dipoles on a triangular and a
kagome lattice? For open boundary conditions a pla-
nar vortex structure appears, which is formed to avoid
free magnetic poles at the boundaries of the sample
(see Fig. 4.6a,b). The ground state of an infinite sam-
ple is a ferromagnetic-like monodomain structure. In
the Fig. 4.6¢ a picture of experimental verification of
the dipolar system made of 364 small magnets on the
triangular lattice is shown. The Monte-Carlo simula-
tions and the experiment reveal identical structures.
Thus, due to the geometric frustration of the lattice,
which commonly leads to a disorder or a noncollinear-
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Figure 4.6: Pure dipolar cou-
pling: top view of a portion of
low-temperature (k7" = 0.05D)
Monte-Carlo configuration on
(a) a triangular lattice, (b) a
kagome lattice; (c) experimen-
tal dipolar model on a triangu-
lar lattice. The model belongs
to the physical collection of J.
Kirschner at the Max-Planck In-
stitute for the microstructure
physics in Halle, Germany
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ity, the perfectly ordered vortex is formed.

In conclusion, although the dipolar coupling has an antiferromagnetic nature the
ground states of vector spins for pure antiferromagnetic and pure dipolar interactions
are completely different. Square and honeycomb geometries which are unfrustrated in
case of pure antiferromagnetic coupling lead to frustrated, non-collinear ground states
in the pure dipolar case. Strongly frustrated, non-collinear for a pure antiferromagnetic
interaction triangular and kagome lattices lead to ordered collinear low-temperature
dipolar configurations.

4.3 Multipolar Interactions: Why can that be in-
teresting?

Among the interactions in many-body atomic, molecular or nanoparticle systems
those of electrostatic or magnetostatic nature are very important. Recently, arrays of
nanoparticles or adsorbates have been proposed for a number of applications as storage
[51], high speed non-volatile magnetic memory (MRAM) [52], and logic functions
for computations [53]. Different applications require different properties of an array.
While in storage applications every particle should be individually addressed; ¢.e. the
nanoelements should not interact, for logic schemes strong interactions are necessary.
In both cases the control of interactions between nanoparticles is very important. To
derive the theory of these interactions one needs to know the charge distribution of
a particle. One of the simplest and most effective ways to do this is to describe a
distribution of charges as a series of multipole moments. There exist several different
ways to explain what are the multipole moments. First a mathematical point of view
will be addressed.

(ii) Multipole moments: Spherical Coordinates

Any two-dimensional periodic function can be expanded in terms of an infi-
nite sum of sines and cosines with corresponding coefficients. This expansion is known
as Fourier series

flz) = %ao + Z a, cos(nz) + Z by, sin(nzx) . (4.2)

The coefficients a,and b, can be described as integrals of the periodic function Eq. 4.2
multiplied with cos(nx) or sin(nz)

a, =+ f f(z) cos(nz)dz |
?f (4.3)

b, = 7f f(z)sin(nz)dzx .

3=
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Similarly, any scalar field on a sphere, which is periodic by definition, can be
expressed in spherical coordinates r = f(r,0,¢) (description of spherical coordinates
is given in Fig. 4.7) as a series of Spherical Harmonics with corresponding coefficients,

HO0) =3 Qi) =5 S QuVin 0, 9) st (14)

=0 m=—1 =0 m=—1 21 - 1
The coefficients @y, are the multipole moments, Ry, (r) = w/;%rlYlm(Q, ©)- nor-

malized Spherical Harmonics, Y, (0, p)- simple Spherical Harmonics. The spherical
harmonic with —/ < m < [ is a function of the two coordinates 6, ¢ on the surface of a
sphere and can be modeled by special set of polynomials known as Legendre functions
P, (cosf). Spherical harmonics are natural functions for the description of a system
with spherical symmetry. For example, with spherical harmonics the 3D motion of
an electron around a nucleus can be described. In that case a spherical harmonic
can be though of as a 3D-path that a particle can travel without “destroying” itself
energetically. This 3D-path is not fixed, and can take on many different shapes, even
for one energy level. In this sense the spherical harmonics correspond to the angular
part of the atomic orbitals. An example of typical representation of e.g. d,2orbital in
physics is shown in the Fig. 4.8a.

The orbital corresponds to the spherical harmonic Y5y and is uniformly colored as
it represents simply a volume of space within which an electron would have a certain
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Figure 4.7: Definition of the spherical polar coordinates
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probability of being (the wave-function of electron). On the other hand, with the
spherical harmonics a spatial distribution of electric charges due to a molecule can be
represented. In that case a charge distribution is usually two-colored as in the Fig. 4.8b.
The colors correspond to positively and negatively charged parts of the distribution.
This representation is typical for quantum chemistry or molecular biology. The multi-
pole expansion plays an important role in the geosciences and the cosmology as well.

With help of the multipoles gravity fields can

(a) 4 (b) (C) be expanded and the linear polarization of
“L @ the sky can be predicted. In geosciences
and astronomy multipoles are defined with

l‘ slightly different constants which lead to so-
called zonal, tesseral and sectoral representa-

Figure 4.8: Representation of the spher- tions. A typical zonal image of Yais given in
ical harmonic Yy for the description the Fig. 4.8c. There are many other appli-
of (a) atomic orbital, (b) distribution cations of the multipole calculus throughout
of charges, (c) sky polarization (zonal the physical sciences as nuclear physics, ra-
spherical harmonic)Representation of the dio physics etc. The graphical representation,

spherical harmonic Y5 for the description however, can be attributed to one of three ex-
of (a) atomic orbital, (b) distribution of amples of the Fig. 4.8.

charges, (c) sky polarization (zonal spher-

Similarly to the Fourier coefficients of the
ical harmonic)

Eq. 4.3, a multipole moment is nothing else
as a volume integral of a charge distribution
multiplied with the normalized spherical harmonic

Qum = /p(r)le(r)dV : (4.5)

\%4

Hence, the multipoles themselves can be visualized as spherical harmonics. The
Fig. 4.8 represents then ()q.

(iii) Multipole moments: Cartesian Coordinates

For the calculation of the electrostatic potential ¢ of a charge density p at
the distance R >> r where r is the maximal size of the charge distribution p in
Cartesian coordinates one can use so-called multipole expansion. An electrostatic
potential as a function of R can be expanded in integral powers of a small parameter
r/R; i.e., ¢(R) can be represented as a number series of a sum where higher terms
include higher powers of r/R: o(R) = ©o/R + p1/R* + o/ R? + ... and become less
and less important at large distances. This is known as the multipole expansion with

Oth order: Monopole potential (falls off likel /R, corresponds to ()
1th order: Dipole potential (falls off like 1/R?, corresponds to Q)
2nd order: Quadrupole potential (falls off like 1/R3, corresponds to Q)
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3rd order: Octopole potential (falls off like 1/R?, corresponds to Q3)

- 0 ? .
O---0 Q, ?c')_ -OI : Qs

O__O__O Qz

-0 X
y o
-0 6 ©

Figure 4.9: Possible shapes of multipoles composed of several electric charges.
Qo-monopole, Q1-dipole, QQ2-quadrupole, J3-octopole

Shapes of multipoles to the third order in terms of electric charges are shown in
the Fig. 4.9. The first term corresponds to a single charge and is called a "monopole
moment”; it is a scalar. The dipole moment is a vector. In general, the order-n term
in the sum is 1/|x|"™! times the contraction of a certain nth-rank tensor with n copies
of; the tensor is the 2"-pole moment of the configuration of charges.

4.3.1 Multipolar Moments of Molecular Systems and Bose-
Einstein Condensate

Polar molecules with an asymmetric charge distribution; ¢.e. with one end of the
molecule relatively negative with respect to the other possess a permanent dipole
moment. Examples are HF, HyO, FCl (where the F atom is negative with respect
to the Cl atom), the polyatomic molecule HCCly (where the H end of the molecule
is positive with respect to the three Cl atoms), three isomers of 1,1-Dichloroethene;
cis-1,2-Dichloroethene; trans-1,2-Dichloroethene and many others. As a dipole is a
vector quantity a total molecular dipole can be obtained by summing up all individual
bond-dipoles as shown in the Fig. 4.10.

Although linear molecules as CO, or acetylene (H-C=C-H) and the planar molecule
benzene (CgHg) do not have molecular dipole moments (Fig. 4.10), they have non-zero
quadrupole moments [85]. Another example of organic quadrupoles give 3,4,9,10-
perylenetetra-carbo-xylicdianhydride, better known as PTCDA molecules, which can
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Figure 4.10: Molecular dipole moments pu of polyatomic molecules

be adsorbed on various substrates [86, 87]; Ha, No, CO on salts or metal surfaces;
ortho-para hydrogen molecules adsorbed on hexagonal boron nitride; solid hydro-
gen; NoAr mixtures and many others [88-90]. There exist more complicated cases.
For example, the total quadrupole moment of the water molecule is zero. However,
27.Q5Y,Q57,Q5%,Q%° tensor components of the quadrupole moments in Cartesian co-
ordinates have non-zero values. For more symmetrical molecules, the first non-zero
multipole moments have higher order. Examples are the methane molecule (CHy) and
giant Keplerate molecule Feszy which have no dipole or quadrupole moment, but has a
non-zero octopole moment [91, 92].
More complicated molecular charge distributions have different multipolar con-
tributions. For example an “American football” which is polarized along it’s long

) . 0L thall tball
axis has non-zero even multipolar contributions Qfeotbar = ngo @ Qf oota

f ootball: | Qf ootball . Qf ootball 4~ The same is true for a discus or any other po-
larlzed object, which is rotatlonally symmetric and at the same time symmetric
around it’s equatorial axis. Rotationally symmetric but not equatorially symmet-
ric objects as, e.g., bowling pin possess as even as odd multipolar moments Qp pin, =
bpzn+przn Qg.pzn+Qg.pzn+Qi.pzn+

A Bose-Einstein condensate is a phase of matter formed by bosons cooled to tem-
peratures very near to absolute zero. At low temperatures, bosons can behave very
differently than fermions because an unlimited number of them can collect into the
same energy state, a phenomenon called “condensation®. For the first experimental
verification of this phase predicted by A. Einstein and S. Bose the Nobel Prize in
Physics for 2001 has been awarded to Eric A. Cornell, Wolfgang Ketterle and Carl
E. Wieman. They succeeded by cooling 2,000 rubidium atoms to a temperature less
than 100 billionths of a degree above absolute zero to force the atoms to lose for
10 seconds their individual identities and behave as though they were a single "su-
peratom”. Nowadays magneto-optical traps for gas condensation became much more
sophisticated and the drops of condensate can be arranged in a cubic structure in the
potential minima of an optical lattice. Recent experimental and theoretical studies
have established that 8"Rb spinor condensate may be ferromagnetic at zero temper-
ature. It means, the expectation value of total spin of a condensate drop F is finite
(F) # 0 [93, 94]. As a result, an ensemble of condensates acts much like large spins
or dipoles on a crystalline lattice. The very new investigations [95] show that un-
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der certain circumstances Bose-Einstein condensate columns may have quadrupolar
moments.

4.3.2 Multipolar Moments of Nanomagnetic Particles

Particles with lateral size smaller than the characteristic exchange length d <
Xex have a single domain magnetization configuration with a macroscopic magnetic
moment. In case of an ideal single domain all ele-
mentary dipoles inside of a particle are compen-
sated and only at the boundary appear uncom- /
pensated positive and negative magnetic poles (see
Fig. 4.11).

[solated magnetic poles have never been ob-
served in nature. They occur always in pairs as
in the example described. However, it is often
convenient to use instead of magnetic poles and
the vector field quantity H the notion of magnetic
charges and a scalar potential ¢. The quantity
@ is defined so that it’s negative gradient is the
magnetic field H = —V¢ where the operator V is
V=il +ja% +kZ. Here i, j, k are the unit vec-
tors of a Cartesian coordinate system, and (z,y, 2)
are the coordinates at the point where the field or
potential is under consideration. In the framework Figure 4.11: Scheme of a nanopar-
of this approximation the macroscopic moment of ticle with n-fold symmetry. Every
a polarized or magnetized particle can be obtained Surface can be divided into n equiv-
by means of the multipole expansion of a contin- 2lent isosceles triangles with edge
uous magnetization distribution within a dot de- length d. The part,lde 18 magnetized
scribed in the Section 4.3 ((ii) or (iii). As can be in 2= direction
seen from the Eq. 4.5 the strength of a multipole moment depends solely on a charge
distribution; i.e. on a shape of an object and on a magnetization/polarization con-
figuration. Hence, for typical magnetization distributions corresponding multipolar
moments can be calculated on the basis of Eq. 4.5.

Let us assume a nanoparticle with n-fold symmetry (n > 1) within the z — y
plane, which is magnetized in z-direction (Fig. 4.11). The symmetry-axis is parallel
to the polarization. The upper surface of the particle is positively charged with the
surface charge density o = pon - M(r) due to uncompensated dipoles, with the unit
vector n perpendicular to the surface and the magnetization vector field M(r). With
this definition the unit for the magnetic charge is Volt-second and the magnetic dipole
moment is measured in Volt-second-meter. The bottom charge is the mirror image of
the positive charge distribution at the top of the particle. To find the integral Eq. 4.5
explicitly the charged surface can be into n identical triangles (Fig. 4.11). Then Q,
are calculated by the sum over the triangles (0 < j < n—1) of the top and the bottom
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surfaces. As the charged surfaces are planar the volume charge density p and the
volume integration in the Eq. 4.5 can be substituted by the surface charge density o
and integration over the surface element dS

le =

n—1

/ dS|o(r)| R (r) — / dS|o ()| Rm(r) | . (4.6)

=0 jthtop—triangle Jenbottom—triangle

<

After several simplification steps this integral can be evaluated analytically. The details
of the calculation can be found in [96]. Similar procedure can be applied to the in-plane
magnetized discs shown in the Fig. 4.12.

I

Figure 4.12: Scheme of a disk within the z — y-plane (magnetized in x-direction).
Due to the magnetization a magnetic surface positive and negative charges emerge.
In case of a uniform magnetization the charge is cosine distributed

Due to the natural symmetry of a disc it is trivially proportional to cos ¢ in cylin-
drical coordinates. Furthermore, the cosine charge distribution can be easily gener-
alized for non-uniform onion states as the charge distribution can be expanded like
p(r) o< Y ¢, cos? p with expansion coefficients ¢,. Due to the symmetry of the onion

p
configuration (Fig. 4.12) only odd integer p appear. The non-uniformity of the mag-
netization increases with increasing p. Expressing the volume element and normalized
spherical harmonics of the Eq. 4.5 in cylindrical coordinates one obtains the following
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integral
h/2 2
Q. = poMs / dz/rodgo (cos’%p Ry (y/ 12 + 22, g — arctan i, gp)) .4
To
—h/2 0

The integral in Eq. 4.7 has polynomial solutions for all integer p including p = 1 for
uniform magnetization [97]. The low order moments of a particle Fig. 4.11 (Eq. 4.6)
with four-fold and cylinder symmetry as a function of a surface area and a height are
brought together in the Tab. 4.1.

Table 4.1: The multipole moments @, in units of the surface charge density up to the
order (I,m) = (7,0) of isotropically magnetized in z-direction particles with four-fold and
cylindrical symmetry

1 | m=0 (Four-fold Symmetry) M=0 (Cylindrical Symmetry)
1 2hd? mhd?
3 hd?( — d?) Thd*(h? — 3d?)
572 344 6 T
5 7 b - Shed : :}1’; 8 Tehd®(h* — 10n*d* + 10d*)
hd? _ 7hSd? hid hd® | =
7| BE - T oh e _ K Zhd?(h® — 21h"d* 4 7T0h*d" — 35d°)

The dependency of the strength of multipole moments on the effective aspect ratio
h/a of a particle with out-of-plane magnetization (Fig. 4.11) is shown in Fig. 4.13a
while for an in-plane magnetized disc (Fig. 4.12) in Fig. 4.13b.

A g A ‘é’ o (. ) Dipole-Dipole
VIig v| § f'’— (. ) Octopole-Octopole
A £ .
051 parald lines . - -( + ) Dipole-Octopole
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-1.0{--. Antiparallel lines Ny a1of WUt "L
00 05 10 15Q4Q, O 50 100

Figure 4.13: a) The low order multipole moments @, (normalized to dipolar

moment Q19) of particles with fourfold symmetry with height h and edge length a.

For h = 0 Q30 = —0.25Q10. (b) The multipole moments in units of the dipolar

moment of the in-plane magnetized discs with height h and radius a. Magnetization
configuration is a non-uniform onion state
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The most important conclusions are following. First, all homogeneously out-of-
plane magnetized prismatic particles with even rotational symmetry (Fig. 4.11) and all
in-plane magnetized discs (Fig. 4.12) do not possess multipolar moments with even [;
i.e., the quadrupoles (Qs), the hexadecapoles (Q4) etc. are not allowed (see Fig. 4.11).
The lowest moment with [ even is (I,m) = (4,3) for an odd, three-fold prism. The
first possible multipole moment with even [ for a five-fold symmetry is (I, m) = (6,5).
The functions @y, (h,a) may cross zero. This happens for example for the octopole
moments of a cube (see Fig. 4.13a). For vertically magnetized particles the octopole
moment reaches 25% of the dipole moment in the limit of small thicknesses. This
geometry corresponds to sizes of particles often used in experimental studies [98-101].
For vertically elongated particles, such as arrays of magnetic nanocolumns [77, 99| or
liquid colloidal crystals with rod-like components [102] the magnitude of the octopole
moments exceeds that of the dipolar one. Similar results have been obtained for in-
plane magnetized dots. For h =~ a the multipolar moments are smaller than the dipolar
one. However, in the limit of small thickness (h << 7() the octopole moment (%,
reaches -61% of the dipole moment Qf; for all odd p and even the dotriacontapole (Q%;)
is of the order of 0.5Q7; (see Fig. 4.13b). Hence, the multipole moments of ultrathin,
in-plane magnetized discs may also be comparable with their dipolar counterparts. The
described geometry is typical for on-going experimental studies on magnetic arrays.

4.3.3 Multipole-Multipole Interactions

Knowing the multipole moments of two particles the multipole-multipole interac-
tion energy can be calculated. The most general formulation for two non-intersecting
charge distributions is given by [103]

1
Ampo Al

EAB = Z EAleAmB (RAB)QﬁmAQlBBmB (48)

BMAMB

with the geometric interaction tensor 77 ,;,m  my [85, 104]

TlAleAmB (RAB) -

<_1)7IBIZ*A+leA+mB (RAB)\/

(lA +lg —my — mB)'(lA + g +mgy —I—mB)!
(lA — mA)'(lB — mB)'(lA + mA)'(lB + mB)' .

(4.9)

The multipole-multipole interaction is a long-ranged one. Therefore, for an ensem-
ble of particles having higher order multipolar contributions the interaction energy
between every pair of constituents has to be calculated. For large systems it is im-
possible. On the other hand the strength of the interaction between higher order
multipoles decreases rather quickly with distance. The dependence on distance is
given by the complex conjugate of the irregular normalized spherical harmonic function

If (Rag) =4/ 2;‘% Y“:l(f{‘p). Hence, it follows from Eq. 4.9 that the interaction

la+lpma+mp
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energy between moments Qﬁ‘ and Qi of order [4 and [p respectively decreases with
increasing distance as ng‘g 5+1  Consequently, higher order multipole moments are
important mainly for R > d. Therefore, for multipoles of order [ > 3 a so called cut-off
procedure is appropriate; i.e. calculations of interaction energy may be restricted to
several nearest neighbors only. To calculate ground states of multipolar systems one
need either to guess a configuration, calculate it’s energy and compare with another

guesses or introduce the Hamiltonian Eq. 4.9 into the Monte-Carlo scheme [105].

4.3.4 Ground States for Multipoles of even Symmetry:
Quadrupolar and Hexadecapolar Patterns

Fig. 4.14 shows low-temperature Monte-Carlo configurations of a pure quadrupolar
system on a triangular and a square lattice for three-dimensional and XY planar mo-
ments [106]. The consideration is restricted to rotationally symmetric Qo9 quadrupoles
observed in nature [86, 88, 107, 108]. For three-dimensional moments on a triangular
lattice a long-range, three-dimensional configuration consisting of seven-atomic rotors
or “pinwheels” with the central atom oriented vertically and the others lying in the
film plane has a minimal energy (Fig. 4.14a). The vertical moments form a triangular
2a superstructure. That structure corresponds to the so-called “4-phase” of hydro-
gen molecules on a triangular lattice found in mean-field and molecular-dynamics
approximations [89, 90]. Every vertical quadrupole occupies the centre of a hexagonal
pinwheel. For an ideal configuration every pinwheel element belongs simultaneously to
two adjacent pinwheels, i.e. the unit cell has three in-plane and one vertical moment.
Therefore, the perfectly ordered pinwheel phase has an average vertical projection per
moment (Qg.) = 0.25.

The three-dimensional pinwheel structures have been observed experimentally,
by means of nuclear magnetic resonance spectroscopy studies in ortho-hydrogen
adsorbates[109] and Ar;_,(Ns), quantum crystals [88, 89, 109]. Hence, the symmetry
of ground state confirms the pure quadrupolar nature of the pinwheel phase in those
systems. The phase is double degenerate as the rotors can have clockwise or counter
clockwise sense of rotation. In contrast to previous studies [89, 90] a 3D quadrupolar
system on a triangular lattice easily admits domains (Fig. 4.14a) with different sense
of rotation. Between the domains a domain wall consisting of moments with T-like
mutual orientation is formed (Fig. 4.14a). The T-orientation is the energetically most
favourable one for two quadrupoles. Therefore, the total energy of the domain struc-
ture is almost identical with that of a monodomain, while the entropy of the domain
structure is higher. According to the principle of maximal entropy the domain struc-
ture represents the state of lowest free energy at finite temperatures. The crossing of
the domain walls is, however, not allowed as this will lead to an increase of the in-
ternal energy due to the deviation of the moments from their equilibrium orientation
in the neighbourhood of the crossing point. Two parallel domain walls cannot come
closer than two primitive cells of the pinwheel structure (4a) without increase of the
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Figure 4.14: The low-temperature pure quadrupolar Monte-Carlo configurations
on a triangular (a,c) and a square (b) lattice. The quadrupoles are represented by
the spherical harmonic Ysy corresponding to the equipotential surface of a charge
distribution with Q29 quadrupole moments; the two clubs represent positive charge,
while the belly is negatively charged. Perspective view of a portion of a configura-
tion. The colour scheme denotes the squared vertical component of the projection
of a moment. The quadrupoles are 3D moments in (a, b) and XY moments in (c)
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internal energy of the system. Therefore the low-temperature configuration of a large
(20 quadrupolar system on a triangular lattice consists of an array of clock-wise and
counter-clockwise “pinwheel” domains separated by parallel domain walls.

In contrast to the triangular lattice the ground state configuration of quadrupoles
on a square lattice is completely planar (Fig. 4.14b). The twofold lattice symmetry
permits the T-configuration for every pair of nearest neighbours, i.e. the configuration
is non-frustrated and monodomain. As the moments have not been constrained to lie
in the XY plane it can be concluded that the quadrupolar interaction induces very
strong easy-plane anisotropy for a square lattice. As this is not the case for a triangular
lattice a low-temperature configuration of a quadrupolar XY system with threefold
symmetry has been additionally calculated. Experimentally, this situation corresponds
e.g. to organic PTCDA molecules adsorbed on Ag(111) [86] having some freedom
of the rotation only in the XY-plane. The calculated ground state configuration is
given in Fig. 4.14c. Instead of the pinwheel phase we find a “herringbone” structure
consisting of lines of quadrupoles with two possible orientations. The moments make
an angle of 15° to the principal lattice axes and 45° to the direction joining the atomic
sites. Within the accuracy of our calculations the angle between two adjacent rows of
moments is exactly 90°. The “herringbone” pattern found in the simulations is very
similar to that of the Ref. [86]. However, the molecules in the experiment are oriented
parallel to the principal axes and, consequently, the mutual angle between the rows
is 60°. The analytical calculation of the energies for all possible relative orientations
of rows of the “bones” shows that the absolute minimum belongs to the Monte-Carlo
solution with the angle of 90°. From this finding we conclude that the configuration of
Ref. [86] cannot be explained only from the minimization of electrostatic interactions
originating from the quadrupolar field of a molecule. One possible explanation is that
the rotation of the molecules is not free, another one is that the molecules possess
higher order multipolar contributions.

Hexadecapolar (Q4) ground states on a triangular and a square lattice for three-
dimensional moments are given in Fig. 4.15. The both configurations are planar. A
"herringbone” structure consisting of lines of hexadecapoles with two possible orien-
tations is formed on both lattices. For a triangular lattice moments make angles of
69° and 157° to the x axis, while for a square symmetry angles of 9.5° and 49.5° are
favorable. Within the accuracy of calculations [106] the angle between two adjacent
rows of moments are 88° and 40° correspondingly. Hence, a hexadecapolar contri-
bution supports the herringbone structure of a planar pure quadrupolar state on a
triangular lattice (Fig. 4.14c). However, the symmetry of the structure changes sig-
nificantly. Thus, the higher-order Q)4 contribution is another possible explanation for
the herringbone pattern of PTCDA adsorbates found experimentally.
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Figure 4.15: The low-temperature pure hexadecapolar Monte-Carlo configura-

tions on a square (a) and a triangular (b) lattice. The hexadecapoles are repre-

sented by the spherical harmonic Yyy corresponding to the equipotential surface

of a charge distribution with Q40 quadrupole moments; the two white-red clubs

represent positive charge, while the bellies are alternately positively (white-red) or

negatively (black-red) charged. Top perspective view of a portion of a configuration.
The hexadecapoles are 3D moments

4.3.5 Ground States for Multipoles of odd Symmetry: Oc-
topolar and Dotriacontapolar Patterns

The octopolar moments are unidirectional, i.e. they can be represented as vec-
tors (see Fig. 4.16). The low-temperature configurations consist of moments oriented
in principal directions of the underlying lattice. Hence, the octopolar interaction
introduces not only an easy-plane but also a three- and twofold in-plane anisotropy
respectively. On the square lattice octopoles form lines being aligned antiparallel (such
as in Fig. 4.3a) while on the triangular lattice the domains show parallel alignment
of the moments (Fig. 4.3b). The dotriacontapolar interactions break the isotropic
behavior of dipoles on square and triangular lattices in the same way. Anti-parallel
alignment is one of the ground states of an infinite pure dipolar system on a square
lattice [81] while on its triangular counterpart the ferromagnetic alignment has the
minimal energy. Hence, the octopolar interaction selects some of the dipolar ground
states. The principal difference, however, is that the dipolar energy, because of its
long-range character, can be minimized avoiding free poles in finite samples, i.e. a
vortex on a triangular and a microvortex state on a square lattices are formed (see
Section 4.2.2). In contrast to finite dipolar systems a finite octopolar system is not
sensitive to the formation of free poles in most geometries as octopoles do not interact
with a field but with the field curvature. Therefore, the gain in the internal energy
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Figure 4.16: Hysteresis loops for a 20 x 20 square nanoarray with QJ39 = 0.5Q1¢
and a pure dipolar system (inset (d)). The magnetic field is applied in z-direction.
Insets (a-c) give the central part of intermediate magnetic configurations; (f) and
(e) show stable zero-field configurations for combined multipoles and the pure dipo-
lar case respectively. Thermal energy is kT = 0.6E). The field is expressed in
poMsVy/ E) with po - the permeability of free space and Vj - the volume of a dot

due the compensation of free magnetic poles at the sample boundary is not so strong
as for pure dipolar systems and low-temperature configurations in finite samples are
still parallel lines for a triangular and antiparallel lines for a square lattice.

4.3.6 Combined Multipoles in Nanomagnetic Arrays

As has been shown in the Section 4.3.2 the in-plane magnetized nanodiscs with
height-to-diameter ratio h/a < 0.5 common for contemporary experimental studies
possess dipolar and octopolar moments with Q3/¢); > 0.5. Hence, for a real nano-
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magnetic array neither pure dipolar, nor pure octopolar configurations are of relevance.
Instead, ground states of an ensemble of combined multipoles should be calculated. Re-
cently, those calculations have been carried out by means of Monte-Carlo simulations
for case of rotationally symmetric multipoles [105]. Arrays of combined multipoles
show maxima of specific heat and susceptibility at the same temperature confirming
the existence of a phase transition. Whereas the zero-temperature ground state on
a square lattice consists of antiparallel lines as in a pure octopolar system, at finite
temperatures alternating regions of uniaxial parallel and antiparallel lines such as in
Fig. 4.17b have been found. The width of regions with parallel lines is usually 2-3
lattice parameters. In ~ 10% of calculations despite a very long relaxation procedure
superdomains (Fig. 4.16f) appear. On an infinite triangular lattice the ground state
is a ferromagnetic single domain as in pure dipolar system. However, in finite systems
the vortex configuration is never formed for Q3/Q; > 0.5. Instead, large collinear
domains appear. Hence, the interaction of dipoles with demagnetizing field is still too
weak comparable to the anisotropy induced due to the octopole-octopole coupling.
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Figure 4.17: (a) Internal energy of ideal parallel, antiparallel, coexisting and

superdomain configurations for L = 20 as a function of Q30/Q10 on a square lat-

tice; (b) Size dependence of different contributions of the magnetostatic energy for
parallel (solid lines) and antiparallel lines (scatter graph) for Q30/Q10 = 0.5

In order to understand why the state of coexisting parallel and antiparallel lines
has the lowest internal energy, different energetic contributions (dipole-dipole, dipole-
octopole and octopole-octopole) and the entropy have to be analyzed. The energy of
ideal and MC configurations on a square lattice as a function of Q)39/Q1¢ is plotted in
Fig. 4.17a. All energies are expressed in the pair interaction energy Ej between two
dots magnetized mutually parallel but perpendicular to the bond Ej o 1/ ngfg B+l
Fig. 4.17b gives size dependence of all energy contributions for parallel lines. It has
been found that the dipole-octopole energy contribution F,;_, is minimal for the par-
allel while maximal for the antiparallel lines. The dipole-dipole (F;_4) and octopole-
octopole (F,_,) interactions, in contrast, prefer antiparallel lines. Therefore for sample
sizes L < 9 and Q30/Q10 < 0.8 the state of coexisting parallel and antiparallel lines
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has the lowest total internal energy. For L > 9 the antiparallel lines are preferable
for all Q30/Q10 as the long-range dipolar contribution increases. The energy difference
between antiparallel lines and coexisting phases or superdomains JF grows with in-
creasing Q30/Q10 (Fig. 4.17a). However, for Q30/Q10 < 0.6 JF is very small ~ 2%,
while the configurational entropy in a system of parallel or antiparallel lines drastically
increases with the system size S = k- In(2 x 2L). As the entropy increases bound-
less with L, in contrast to the slow convergence of the dipolar sum, the free energy
of the coexistence is lower for non zero temperatures. Formation of superdomains
gives an additional contribution to the entropy. This contribution depends on size
of superdomains. The size of superdomains in finite dipolar systems is driven by the
pole avoidance principle. While the energy cost due to the wall formation increases
only linearly with the domain size, the gain in the long range dipolar interaction in-
creases with the square of the domain size and only a rare formation of superdomains
is observed at low temperatures. The additional entropy for large superdomains is
small. Approaching critical temperature the domain size decreases, the corresponding
entropy increases and the superdomains appear more frequently. This finding is in ac-
cordance with the experiment [110] giving evidence for formation of the large in-plane
collinear domains extending across several dots.

Thus, unlike the non-collinear ground states of pure dipolar systems their odd
multipolar counterparts select collinear configurations from the dipolar manifold. The
reason for this selection is two-fold. First, the octopolar/dotriacontapolar interaction
on a triangular and a square lattice introduces an easy-plane and a tri- and a biaxial
in-plane anisotropy respectively. Second, the pole avoiding principle does not hold
for the octopole-octopole interaction energy contribution. Therefore, systems with
strong octopolar contribution are not as sensitive to the formation of uncompensated
magnetic poles at the sample boundary as systems with dominating dipolar interac-
tions. Despite the collinearity the lattice structure plays an important role. While the
ground state for Q39/Q10 ~ 0.5 multipoles on a square lattice consists of antiparallel
lines of magnetic moments, the triangular symmetry leads to the parallel ferromagnetic
configuration.

4.3.7 Magnetization Reversal in Nanomagnetic Arrays

Experimental investigations show that in comparison with an infinite film the in-
terparticle interactions usually lead to a decrease of the switching field in patterned
media with out-of-plane magnetization [77, 98, 99] and to an increase of the coercivity
for in-plane magnetized particles [99, 111-113]. Although in some cases an agreement
of switching behavior with theoretical predictions has been obtained, it is often found
that measured switching fields deviate significantly (10-15%) from those expected from
pure dipolar interactions. In the following the field dependence of magnetization in
square and triangular array of dots with in-plane magnetization and Q3/Q19 > 0.5
will be analyzed and compared with hysteretic properties of a pure dipolar system.

Fig. 4.16 shows the magnetization reversal of a square lattice with Q30/Q10 = 0.5
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Figure 4.18: Snapshots of the central part of an experimental dipolar model on

a square lattice during a magnetization reversal. The magnetic field is changed

from +x to —z direction. The first and the last insets give the central part of

saturated magnetic configurations for positive and negative field respectively. The

central inset shows stable zero-field configuration while two other insets represent
intermediate configurations

corresponding to an array of ultrathin particles with h/2a < 0.5 and for a pure dipolar
system (h/2a ~ 1, Fig. 4.16d). A pure dipolar system does not show any easy-axis
hysteresis. The reason for that is clear from the Fig. 4.18 where several snapshots of a
hysteresis on a pure dipolar square lattice are shown where the whole magnetization
reversal in an experimental dipolar model is registered. In a pure dipolar case all
magnetic moments rotate coherently. Therefore, the total magnetization decreases
continuously from unity at saturation field Hg to zero for H = 0. In a multipolar
array, on the contrary, the hysteresis loop is quite open. The squareness s depends on
the composition, the strength of multipoles and on the temperature. The field is scaled
with Ej described in the previous section. Therefore, contributions from moments
of different order in combined multipoles scale differently with Rap. All values are
given for Q30 = 1, Q10 = 2 and Ryp = 1. This gives s ~ 0.5 and H.ugMsVy ~
0.7E). By calculating Ej; this result can be scaled to a square array of any material
with any interdot distance. For example, for an array of permalloy particles at room
temperature Mg = 8 - 10°A/m, and vanishing anisotropy K; < 1000J/m?® with h =
20nm, d = 2a = 70nm and R = 100nm we find H. ~ 20mT.

Magnetic moments do not rotate continuously as in a pure dipolar system (see
Fig. 4.16d, Fig. 4.18 and animation Hysteresis(Dipolar).avi) but are reoriented line-
by-line (Fig. 4.16a-c and animation Hysteresis(Multipolar).avi) as noncollinear config-
urations are energetically unfavorable. From our calculations follows that the compe-
tition between the E;_, and E;_4+ F,_, interaction energy plays an important role for
the magnetization reversal. As has been already demonstrated in Fig. 4.17a the total
energy of the configuration Fig. 4.16b is close or even lower than that of Fig. 4.16c,
where all chains are antiparallel. Hence, to go from configuration Fig. 4.16b to the
configuration Fig. 4.16c an external magnetic field has to be applied and the hysteresis
then appears. H, increases with decreasing temperature. This effect is similar to the
superparamagnetic temperature assisted switching. Thus, the hysteretic behavior is
predefined by the competition between the octopole-dipole contribution of the magne-
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tostatic energy and its dipole-dipole and octopole-octopole counterparts. Pure dipolar
systems do not show any significant hysteresis.

On a triangular lattice H, increases by ~ 10% compared to the pure dipolar system
in good accordance with experiments [112]. However, the magnetization reversal is
different from that on a square lattice. Hence, the ground sates and the magnetization
reversal in dense packed nanomagnetic arrays is strongly influenced as by order of
magnetostatic interactions as by underlaying lattice symmetry.

4.4 Summary

In conclusion, systematic investigation of multipolar and dipolar low-temperature
stable configurations on a triangular and a square lattice have been carried out theo-
retically. In contrast to previous results we demonstrate that the multipole-multipole
interactions change considerably stable low temperature dipolar states. The dipole-
octopole interaction is an important component that might also explain the superfer-
romagnetic behavior in dense grain magnetic materials and magnetic arrays. Tuning
the multipole moments by changing the geometry of nanoparticles offers a new route to
the control of the coupling behavior and therefore the hysteretic properties of magnetic
nanoparticle arrays.
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Chapter 5

Magnetic Ordering In Quasicrystals

5.1 Introduction

The last few years have shown a major growth in investigations on the spin order in
frustrated magnets, motivated by the dramatic changes in the magnetic properties of
such systems. The phenomenon of geometric frustration is simple and fundamental. It
can be applied to different interactions and is present in a variety of physical systems
like magnets, liquid crystals, protein structures or Josephson junction arrays [114].
A very simple example of local geometrical frustration is the arrangement of three
identical units on an equilateral triangle (Fig. 5.1a). The units are constrained to have
one of two opposite properties (black/white, up/down, on/off etc.) and the energy of
the interaction between any two units is minimized if the two nearest neighbors on the
triangle have different states. The all three elements, however, can by no means all have
different states. Two out of three units will necessarily have the same property. Hence,
the energy of the system cannot be entirely minimized. In case of magnetic or electric
Ising moments, for example, there exist six possible configurations of equal energy
with two units up and one down or vice versa. At equilibrium the system is hesitating
between those six collinear configurations. Vector spins can manage the frustration
better than Ising moments by adopting a noncollinear structure with the spins making
an angle of 120 from each other. The noncollinear solution for a triangular lattice is
known as Néel structure (Fig. 5.1b).

The overwhelming majority of the investigations on frustrated magnets concerns
periodic crystals. Omne of the first works on the complex order in frustrated anti-
ferromagnets on quasilattices is Ref. [115]. In that paper a renormalization scheme
on the Penrose tiling for a Heisenberg exchange model with competing antiferromag-
netic interactions has been introduced. A phase diagram consisting of a variety of
ordered phases has been obtained. Subsequent study [116] has demonstrated that
frustration leads to a central gap in the density of states for the Penrose lattice. In
studies on quasiperiodic geometries emphasis has been put on collinear configurations
of magnetic moments coupled by the short-range exchange interaction only [117-126].

67
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Figure 5.1: (a) Triangle building block of
a two-dimensional crystal. Red and blue
balls represent atoms or magnetic moments
of different sort coupled by antiferromagnetic-
like short-range interactions. The antiparallel
alignment of all neighboring units is not possi-
ble; (b) Top view of a noncollinear Néel struc-
ture on a triangular lattice. Different colors
represent three sublattices of the Néel config-
uration.

A complete list of literature on ape-
riodic lattice models can be found in
Refs. [127, 128]. Noncollinear struc-
tures and long-range dipolar forces were
traditionally not considered. The sit-
uation has changed at the end of the
last century. In the early nineties
rare-earth-based (RE) quasicrystals have
been discovered [129-131]. The RE-
containing icosahedral alloys of the RE-
MgZn and RE-MgCd families are quite
unique among known quasicrystals as
magnetic moments of 4f electrons of the
RE elements are sizable and well local-
ized (a good collection of the literature
can be found in Refs. [132, 133]). The
hope that the RE-quasicrystals may be-
come magnetically ordered at low tem-
peratures evoked a considerable number
of experimental and theoretical investi-
gations of magnetic behavior on non-
periodic lattices.

A first experimental finding of long-
range antiferromagnetic order in rare-
earth icosahedral quasicrystals [134]
turned out to be an artefact [135, 136].
However, it gave a power stimulus to fur-
ther theoretical and experimental inves-
tigations of magnetic ordering in aperi-
odic structures. Although the atomic
and electronic structure of rare earth qua-
sicrystals is not completely understood,
it has been postulated [137] that the
low-temperature microstructure of such
a magnet resembles geometrically frus-

trated but site-ordered magnetic systems and consists of weakly interacting magneti-
cally ordered clusters. Another interesting approach is based on recent elastic neutron
scattering experiments on a Zn-Mg-Ho icosahedral quasicrystal [138]. This reveals a
very peculiar diffuse scattering pattern with icosahedral symmetry at temperatures
below 6K. In contrast to the Ref. [137], the authors interpret the diffraction pattern
as that of several interpenetrating quasiperiodic sublattices, where all spins point in
the same direction [139]. There are very helpful for the understanding of real-space
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magnetic configurations leading to those long wave vector correlations coming from
a noncollinear spin arrangement suggested by Lifshitz from pure geometrical consid-
erations [140]. Recent interesting results for quantum spins on the octagonal tiling
[141-143] and systematic calculations of the noncollinear magnetic ordering on eight-
and ten-fold quasiperiodic tilings are seen in [139, 144, 145|. Distinct from the the-
oretical spin models including only short-range interactions is a calculation of the
ground state of a long-range dipolar quasiperiodic magnet [146]. The calculation of
the dipole-dipole interactions in quasiperiodic structures is important as for the RE-
based quasicrystals, as is the case for magnetostatically coupled nanoarrays. In the
following, the influence of the structural quasiperiodicity on the antiferromagnetic and
dipolar magnetic ordering will be reviewed.

5.2 Quasiperiodic Tilings

Starting from the famous pattern of Roger Penrose many different ways have
been discovered to tile a plane non-periodically with a similar set of regular poly-
gons [147, 148]. Later many of these purely mathematical constructions have found
their realisations in real materials. The work on quasicrystals has opened up the way
to the very wide field of quasicrystals approximants [149]. Nevertheless two most pop-
ular among quasiperiodic tilings remain the ten-fold Penrose [150] and the eight-fold
Ammann-Beenker [151] structures.

The Penrose pattern consists of two rhombuses with edges of length a, one with
angles of 36° and 144° and the other with angles 72° and 108° (Fig. 5.2). The rhombic
tiles are arranged without gaps or overlaps according to matching rules [150]. Alterna-
tively, the planar Penrose tiling can be generated using a single kind of tile, a decagon
[152-156]. Every decagon consists of Penrose rhombuses. In contrast to periodic lat-
tices a decagonal atomic cluster can share atoms with its neighbors. The overlapping
rules have been mathematically proven [153]. Only two types of the overlap (A and B)
are allowed [152]. Location of 7A” and ”"B” in a Penrose lattice are marked in Fig. 5.2.
The octagonal tiling is made out of two other motifs: a square and a rhombus of equal
edge lengths (Fig. 5.3a) with the angles of 7/4 and 37 /4 for the rhombic tile.

5.3 Peculiarities of Magnetic Coupling
in Quasiperiodic Structures

The quasicrystals can be structurally ranked in-between the periodic lattices and
completely disordered media. In contrast to periodic crystals, in quasicrystals the
number of nearest neighbors varies widely from one point to another like in disordered
matter. The Penrose tiling [150], for example, has atoms with coordination number
changing from 3 to 7. Hence, the energy per magnetic moment also varies. Unlike the
disordered media, however, this variation exhibits a long-range orientational order,
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Figure 5.2: (a) A section of the Penrose tiling. The original Penrose rhombic tiles and

the decagonal tiles are indicated. Two allowed overlapping of decagonal clusters are shown

as A and B. (b) The original Penrose rhombic tiles. Five nearest neighbor distances (the

sides and the diagonals of the rhombuses) and their lengths are given. 7 is the golden mean.

The two strongest exchange bonds according to two shortest nearest neighbor distances are
denoted as J and J'.

Figure 5.3: Configurations for a frustrated Ising antiferromagnet on (a) elementary tiles and
(b) six local environments of the Ammann-Beenker tiling. Bold lines denote the frustrated
bonds. The open and filled circles represent different spins.
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i.e. any finite section of a quasicrystal is reproduced within a certain distance. In
particular, fivefold symmetry, forbidden in conventional crystallography, can be ob-
served in the diffraction patterns. Thus, the magnetic ordering in quasicrystals should
be different from the collinear magnetism of periodic crystals and from spin-glass-like
behavior of the disordered media.

The antiferromagnetic system on a quasicrystalline tiling can be geometrically frus-
trated as every rhombic tile consists of two triangles. The frustration in quasicrystals
is different from that of periodic systems and that of disordered media. In highly or-
dered magnets the frustration is uniform, i.e. equal for all lattice points. In disordered
materials the frustration is random. In quasicrystals the change in coordination num-
ber leads to spatial alternation of the exchange or the dipolar energy and, thus, the
degree of frustration. However, the non-uniform magnetic frustration is not random.
The non-uniform geometrical frustration is the second important ingredient for the
definition of the magnetic microstructure in quasicrystals.

The exchange coupling in quasicrystals is also different from that of their periodic
counterparts. Atoms on quasi-periodic lattices have not only varying number of neigh-
bors but also several different nearest-neighbor distances (Fig. 5.2, 5.3). Accordingly,
there are several different values of the exchange force which can even change sign.
The existence of several exchange constants J can also exert a significant influence on
the microstructure of the quasiperiodic magnets.

In summary, it is obvious that the varying number of nearest neighbors, non-
isotropic magnetic frustration and varying J-constants are important for the magnetic
ordering in quasiperiodic ultra-thin films. In the following a general spatial resolved
description of the magnetic ordering on two-dimensional quasiperiodic tilings will be
discussed.

5.4 Computational Details and an Experimental
Model

Since a magnetic structure on a quasicrystalline tiling is not periodic, an analytical
description of the micromagnetic structure is hardly feasible. Therefore Monte-Carlo
simulations are often utilized to find equilibrium spin configurations at a given tem-
perature. Usually in the Monte-Carlo simulations only local exchange interactions
have been considered [115, 117-126]. Here a more universal calculations with the local
ferromagnetic or antiferromagnetic exchange interaction and the long-range dipolar
coupling will be discussed [139, 144-146]. In most rare earth intermetallic compounds
an oscillatory (RKKY - like) exchange interaction has been observed [157]. A theoret-
ical treatment of RKKY systems is still lacking. This review is concentrated on studies
of exponentially decreasing exchange coupling corresponding to a rapid-decaying limit
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of an oscillatory interaction. We discuss the Hamiltonian given by

S;-S; S, 1;:)(S;r;; .
H:Jijzsi-sj+DZ( -~ =5 ])g : J>> ~Ki1» (8, (51
(@.5) gl "

T -
where S, is a three- or two-dimensional unit vector in the case of classical vector or
xy-spins, and S} is equal to £1 in the case of Ising spins (so S¥ = SY = 0); (i, )
denotes the nearest neighbor pairs. For an antiferromagnetic system, the exchange
parameter J;; is positive, and neighboring antiparallel spins contribute a lower energy
than parallel neighbors. For a ferromagnetic system J;; is negative and the parallel
orientation of neighboring moments is favorable. The coefficient K7 is the first-order
anisotropy constant. The Monte-Carlo simulations have been carried out on finite
Ammann-Beenker [151], Penrose, Anti-Penrose [150], Tiibinger Triangular [158] and
Tie-Navette [159] tilings with free boundary conditions. The procedure is a simulated
annealing method with at least 15 successive temperature steps [139, 146]. At each
temperature, the convergence of the relaxation process towards equilibrium has been
observed for any initial configuration after a few thousand Monte Carlo steps per spin.
Hence, the single-spin-update algorithm is efficient in this case. At the end of the
cooling down process, the total energy is just fluctuating around its mean equilibrium
value. To reduce boundary effects only the core of a tiling has been analyzed. The
samples, which will be addressed in what follows, are circular, containing of order of
53000 magnetic moments. The dipolar interaction of each magnetic moment with all
the other moments has been considered.

In order to calculate the exchange energy the set of nearest neighbors that are
coupled via the short-range interaction has to be defined. In periodic crystals the
exchange coupling between next nearest neighbors is usually enough to ensure the
magnetic order. In quasicrystals the situation is different. The pattern consists of
two motifs with edges of equal length a (Figs. 5.2, 5.3). The diagonal bonds are often
neglected in the calculations. With such a treatment of bonds the lattice deviates
from the original tiling. This disregard is physically questionable as the exchange cou-
pling increases exponentially with decreasing interatomic distance. In investigations
reviewed here, the short diagonal of the rhombus and the sides of the motifs for all
tilings have been considered as nearest neighbors.

The simulation results will be compared with an original experimental dipolar
system made of 309 small magnets on the Penrose lattice. The experimental system
represents a pure dipolar model which corresponds to the numerical simulations for
zero exchange interaction. It concerns a 480mm x 480mm Penrose lattice of magnets of
4 mm length separated by 30 mm. The large distance between the magnets is chosen
on purpose to minimize multipolar terms that can trap the system into metastable
states. The magnets are put onto nonmagnetic vertical axes and can rotate in the z,y
plane.
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5.5 Magnetic Ordering in Two-Dimensional Qua-
sicrystals

5.5.1 Dominating Ferromagnetic Interactions

It seems that the ferromagnetic interaction cannot bring new interesting physics as
its ground state should be a relatively simple ferromagnetic single domain. Recently,
however, it has been demonstrated [146] that in quasicrystals the situation may be
more involved than is usually expected. In this study Ref. [146] five different values
of the exchange constant, i.e. for the sides and all diagonals of the rhombuses, have
been considered. J has been taken to be unity. The exchange interaction decreases
exponentially with the distance between magnetic moments. The strength of the
exchange interaction has been defined as J;; = Jexp(l — p;;), where p;; = ri;/a is
the distance between two neighboring moments normalized to the length of the side
of the rhombuses a. p;; takes the lengths of the diagonals of the Penrose tiles. The
shortest diagonal has a length of p;; = 77! < 1 with 7 - the golden mean. Therefore
J' = Jexp(l—771), i.e. J islarger than J. Further interactions become weaker than
J with increasing distance as in that case p;; > 1.

According to the Mermin-Wagner theorem [160], no long-range order exists in
two-dimensions with continuous symmetry, because thermal fluctuations result in a
mean-square deviation of the spins
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ratio of exchange to dipolar constant
R = J/D and on the radius of the
cut-off in the exchange coupling (p).
In the quasiperiodic Penrose lattice X
with high R, i.e. with the strong ex-
change interaction, a single domain
for all cut-off radii p > a is found.
It means that the exchange coupling
acting along the two shortest bonds
(J and J') is enough to ensure the
ferromagnetic order. However, the

Figure 5.4: Top-view of the portion of the quasi-
ferromagnetic spin configuration in a sample of fi-
nite size for p = 1.176a7 and R = J/D = 5. The
magnetic moments are nearly coplanar to the sides
of the decagons. The X-component of the average
magnetization is Mx = 0.85.
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degree of magnetic order increases remarkably with increasing p. While the average
magnetization per moment at low temperature (J/kT = 100) and high ratio R = 103
is almost unity for the exchange cut-off radius p = 1.176a7 it is only M; = 0.975 for
p = a.

Hence, in contrast to periodic lattices the ferromagnetic order in quasicrystals
depends strongly on the cut-off radius in the exchange interaction. In case of small p
high magnetic frustration of the quasiperiodic structure leads to significant deviation
of the average magnetization from unity even for very high R - ratios. An example of
a ferromagnetic configuration on a Penrose tiling is shown in Fig. 5.4.

5.5.2 Dominating Antiferromagnetic Interactions

In the recent theoretical study [139, 145] we have derived stable low-temperature
magnetization configurations on different quasiperiodic tilings. The results obtained
provide an explanation for the origin of the antiferromagnetic modulations observed
experimentally in Ref. [138]. While the spin order in antiferromagnets is usually char-
acterized by a periodic modulation described by wave vectors on the order of in-
verse atomic distances, the spin order in antiferromagnetic quasicrystals admits three-
dimensional noncollinear structures consisting of several interpenetrating subtilings
with longer wave vectors. First the details of the low-temperature antiferromagnetic
ordering on the octagonal tiling will be given. Then the results will be generalized for
other tilings as well.

The short diagonal of the rhombus and the sides of the octagonal motifs have
been considered as nearest neighbors. We distinguish the two cases J; > 2J and
Jq < 2J, where J; denotes the interaction along the short diagonal and the interaction
strength along the sides J is unity. The first case corresponds to a rapid growth of
the exchange coupling with decreasing interatomic distance. The two nearest-neighbor
bonds form six local environments with coordination numbers varying from 5 to 8 as
shown in Fig. 5.3(b). They occur with relative frequencies v, = 17 — 12v/2 ~ 2.9%,
v = —41 +29v2 =~ 1.2%, vy = 34 — 242 =~ 5.9%, v, = —14 + 10v/2 ~ 14.2%,
vp =6 — 4v/2 ~ 34.3%, and vp=—1+ V2 &~ 41.4%. Taking into account the short
diagonals of the rhombic tiles increases the average coordination number of the tiling
from 4 (the value without diagonals) to 8v, +Tvg +6v, +5(vp +vg+vp) = 8—2v2 =
5.17.

Ising spins

The square tile of the octagonal structure is non-frustrated as every pair of the
moments can be chosen to be antiparallel (Fig. 5.3a). If we had not taken the short
diagonals of the rhombic tiles into account, the same would be true for the entire
tiling, and there would be no frustration, because the rhombic tiling is bipartite.
Now, we consider spins on short diagonals as nearest neighbors, the rhombic tiles
are always frustrated. If the energy of one nearest neighbor pair is minimized by
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having antiparallel spins, the third and forth spins cannot be chosen to minimize the
energy of both of its neighbors (Fig. 5.3a). The magnetic moment will necessarily be
parallel to one of the neighbors. For J; < 2J two out of six possible configurations
have smaller energy as they possess only one pair of parallel nearest neighbors per
rhombus instead of two (Fig. 5.3a). In this case spins can have one of six possible
energy values corresponding to different local environments (Fig. 5.3b). For J; > 2.J
the four configurations with two parallel bonds have lowest energy as their weight is
smaller than that of the strong diagonal coupling. The second case comprises much
more different possibilities of energy distribution. To give a quantitative description
of the local frustration we introduce a local parameter f = %, where E; is an
actual energy of a spin i and E;4 is a ground state energy of a rleievant unfrustrated
vertex. With this nomenclature, only the central spins of the vertices F' and E are
magnetically frustrated fr = 0.4 and fg = 0.8 for J; = J < 2J. The Monte-Carlo
simulations confirm our reasoning based on the analysis of frustration. Fig. 5.5a gives
the frequency distribution of the exchange energy per atom E for two cases and a
top-view of a portion of Ising configuration with J; > 2J.
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Figure 5.5: The frequency distribution of the energy per spin on the octagonal

tiling for (a) Ising and (b) vector spins. Solid lines correspond to the case J; < 2.J,

dashed lines to J; > 2J. Purely antiferromagnetic interaction at k7T = 0.01J is

considered. Top-views of portions of Monte-Carlo configurations with underlying

tilings are shown as insets. The light and dark circles represent different spins in
(a) and different energies in (b), respectively.

The energy distribution for J; < 2J simply reproduces the frequency of 6 vertex
configurations. The "up” and "down” configurations are perfectly ordered and coincide
with the black-and-white model of Niizeki [161]. For large J; we find 8 possible energy

values. The "up” and "down” subtilings, however, are spatially disordered (see inset
Fig. 5.3a).
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We have calculated the magnetic structure factor

1 ik-(r—r’ zZQz
5400 = 1 300 (5755) (5.2

r,r’/

using the Monte-Carlo data for different samples. Here k is the wave vector and S? is
a vertical component of a magnetic moment at the position r. The diffraction pattern
of the Niizeki configuration coincides with that of quantum Monte-Carlo calculations
(Fig. 5¢,d of Ref. [141]) and theoretical prediction [162], while the intensity map of
the configuration Fig. 5.5a is almost structureless. It means that Ising solution with
Jg < 2J reproduces in essence the antiferromagnetic superstructure, corresponding to
a modulation vector q = (3,3, 3, 5) [138] in the octagonal tiling, whereas stronger
coupling leads to a spin-glass state.

Vector spins

An exciting question is if the further minimization of the total energy and frustra-
tion by means of the noncollinear alignment of magnetic moments is possible. At first
glance the magnetic structure of the low-temperature pure antiferromagnetic config-
uration seems to be rather disordered. The analysis of the local energies, however,
reveals several characteristic energetic maxima in the frequency distribution shown in
Figs. 5.5b and 5.6. The simple existence of the peaks means that there exist different
sorts of magnetic moments having well-defined relative orientation to their nearest
neighbors. This orientation, however, is not associated with any absolute direction in
space. Therefore, in accordance with the Mermin-Wagner theorem, no long-range or-
der exists in two-dimensions with continuous symmetry, because thermal fluctuations
result in a mean-square deviation of the spins from their equilibrium positions which
increases logarithmically with the size of the system.

The addition of a very weak anisotropy, which often exists in real samples, does
not change the distribution of the exchange energy, but permits to anchor the absolute
spatial orientation of the magnetization. Nevertheless, the total structure still looks
spin-glass like. In the following it will be shown that the antiferromagnetic structure
on quasiperiodic tilings is ordered but the order is non-trivial and unusual for periodic
crystals. We concentrate further description on 3D vector spins while similar results
for xy-spins have been obtained.

To obtain an absolute symmetry axis, we apply a very weak out-of-plane anisotropy
K ~ 1073J to the system. The squared vertical component of magnetization (S7)?
becomes finite. The positions of the energy peaks on the frequency diagram remain
unchanged. All maxima are different from those of the Ising model. It means that
the angles between the neighboring magnetic moments are not always equal to 180°
or 0°, i.e., the magnetic structure is noncollinear. The different number of peaks —
eight for J; < 2J and two for J; > 2J (Fig. 5.5b) — already tells us that, in contrast
to the Ising case, the maxima do not coincide with the 6 vertices of the tiling. The
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Figure 5.6: The frequency distribution of the energy per spin on the Tibingen
triangle (a), Anti-Penrose (b), Penrose (c¢) and Tie-Navette (d) tilings for classical
vector spins. A purely antiferromagnetic interaction J at a temperature k7" = 0.01.J
is considered. The insets (a-c) give calculated Bragg scattering of SY component
of magnetization for subtilings composed of magnetic moments belonging to peaks
with —6 < ;52 < —4. The scale goes from -6 to 6 kf%,/ﬂ The inset (d) gives a
portion of the stable magnetic configuration on the Tie-Navette tiling as described

in the text. Dark and light grey arrows denote antiparallel magnetic moments.

minimal possible local energy increases from —8J to approximately —6J for J; = J
or —5.44J for J; = 2.2J. The average energy per spin, however, decreases by more
than 0.3.J and reaches the value of F ~ —2.85.J and F ~ —3.30.J respectively. Hence,
the increase of the entropy permits to minimize the average frustration and the total
energy of the system. Similar discrete energy spectrum has been found for other tilings
as well (see Fig. 5.6). The number and positions of peaks variate for different tilings
but the discrete character remains. Spatial arrangements of the magnetic moments
as a function of the exchange energy for Penrose, Anti-Penrose, Tiibinger Triangular
and Tie-Navette tilings are given in Fig. 5.7. While spatial arrangements of different
subtilings in the Fig. 5.7 are encoded in colors, for an octagonal tiling they are shown
separately in Fig. 5.8.

Each configuration in Fig. 5.8 or each shade of grey in Fig. 5.7 represents a certain
energy range corresponding to one of the peaks in the spectrum of Fig. 5.5b, 5.6. In
Fig. 5.8 colors represent the x-projection of the magnetization. The magnetic moments
form 8 subtilings of different energy (FE1, ..., Eg) which generally do not coincide with
a specific vertex type. The splitting of the energy and frustration levels is described
in detail in Fig. 5.8. For example the vertices B and C' (see Fig. 5.3) belong to
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Penrose Tie-Navette

Figure 5.7: Energy maps for classical vector spins on Tiibingen triangle (a), Anti-

Penrose (b), Penrose (c) and Tie-Navette (d) tilings. The circles give positions of

magnetic moments. Different shades of grey denote different energies corresponding

to the peaks in figure 5.6. Purely antiferromagnetic interaction with J = 1 for all
ri; <1 at KT = 0.01J is considered.

the same energy maxima Fs but have different local frustration fgp = 0.24, fo = 0.11
(Fig. 5.8). At the same time the central spin of the vertex D can have either the energy
Es5 or E4 and, therefore, can have two different values of the frustration fp; = 0.01
and fps = 0.11 depending on local surroundings. Thus, every configuration of the
Figs. 5.8, 5.7 can enclose either a part of the atomic places belonging to one vertex
type or two different vertex types together. Nevertheless all subtilings are spatially
ordering. Each subtiling can be separated into the energetically degenerate ‘right’ and
‘left’ parts which also have a perfect quasiperiodic arrangement. Fig. 5.9 shows a per-
spective view of a portion of typical Monte-Carlo configuration for the Penrose and the
octagonal tiling. The corresponding configurations represent the characteristic Pen-
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Figure 5.8: Spatial distribution of magnetic moments belonging to eight subtilings

of a noncollinear configuration on an octagonal tiling consisting of 2193 spins. Jg >

2J. The light and dark circles represent positive and negative x-components of the

magnetization. The in-plane components are not given for the sake of simplicity.

Average values of the exchange energy F and the local frustration f per spin are
indicated.

rose and Amman-Beenker ‘stars’, which are also shown in figure 5.9 for clarity. On the
Penrose tiling, the ‘star’-pattern can easily be recognised in the magnetic structure,
because the moments belonging to the perimeter of enclosed ‘stars’ show perfectly
antiparallel alignment. On the octagonal tiling, the situation is more complicated.
The central magnetic moment is neither parallel nor antiparallel to the neighbouring
magnetic moments. Its eight nearest neighbours have different sets of mutual angles.
The moments forming the next ring have still another orientation with respect to
their nearest neighbours. The noncollinear alignment of the neighbouring moments
indicates that the system is geometrically frustrated, i.e. there is no possibility to
align all neighbours in an antiparallel arrangement. Similar noncollinear antiferro-
magnetic configurations are formed in the Tiibingen triangle and Anti-Penrose tilings.
Within the examples of tilings considered here, the Tie-Navette tiling represents an
exception. The magnetic structure observed for this geometry consists of two antifer-
romagnetically aligned quasiperiodic sublattices, as shown in figure 5.6d. This means
that every pair of nearest neighbouring moments can be aligned antiparallell, i.e. the
antiferromagnetic configuration is not frustrated.

The diffraction pattern of a quasiperiodic antiferromagnetic system is more com-
plex than that of the Ising or the quantum-mechanical [141] model. As the spin
structure is noncollinear, not only the structure factor S#*, but also S** and SYY can
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Figure 5.9: Perspective view of a portion of a Monte-Carlo configuration on the

Penrose tiling (top) and the octagonal tiling (bottom). Top views of the corre-

sponding patches are shown on the right. The magnetic moments are represented
as cones.

be recognized. The calculated S¥¥ Bragg maps for different tilings are given in the
insets to the Fig. 5.6 whereas diffraction patterns for all three magnetization compo-
nents of an octagonal tiling are presented in Fig. 5.10. The eightfold S** and S**
patterns contain additional long wave-vector peaks which could not be identified in
the previous investigations [141]. In dependence on the anisotropy (or on the initial
random configuration for K; = 0) new peaks also occur in S¥. The Bragg reflexes
found in study [139] select a subset of the wave vectors given in Ref. [140] where
ny + ng + n3 + nyg is odd. Peaks with n; + ny + ns + ny even are extinct. Ac-
cording to the nomenclature of Ref. [162], the following wave vectors can be iden-
tified: (1,0,0,0), (1,—1,1,0), (3,-2,1,1), (3,—1,—1,2), (1,1,—1,0), (1,0,1,—1),
(0,2,-1,0), (0,0,1,-2), (-1,0,1,-3), (0,2,—2,1), (0,1,—2,2). Hence, the non-
collinearity of the spin structure gives rise to selection rules different from those of
collinear models [140, 141].
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Figure 5.10: The calculated Bragg scattering of S%, SY and 5% component of mag-
netization for the antiferromagnetic superstructure. Reflexes indicated by arrows
are new in comparison to previous studies.

5.5.3 Dominating Dipolar Interaction

Fig. 5.11 shows examples of relaxed magnetic configuration for pure dipolar inter-
actions obtained in the numerical (Fig. 5.11a) and in the experimental (Fig. 5.11b)
model. Both studies show that after different relaxation procedures a micromagnetic
pattern can have different local arrangement of dipoles. The total energy, however, is
always identical. Thus, the ground state in case of J = 0 is highly degenerate. All
patterns, theoretical and experimental, have features in common. Magnetic moments
are ordered in circular loops. The diameters of the loops are identical all over the
sample. The loops overlap. This overlapping is not accidental but follows certain
rules. Amazingly, these rules coincide with the recently proposed ”decagonal model”
of quasicrystals described in the section 5.2.

The decagons can be easily recognized in the magnetic microstructure of the nu-
merical and the experimental model (Fig. 5.11a,b). In order to minimize the dipolar
energy the magnetic moments located on the perimeter of a decagon form closed
chains. The moments are coplanar to the sides of the decagons. The overlapping rings
of magnetic moments can have the same or opposite sense of rotation. The orientation
of the moments that do not belong to the perimeter of decagons is highly frustrated
and varies from cluster to cluster. The overlapping magnetic decagon-chains form a
quasiperiodic pattern. Thus, in case of pure dipolar interaction the magnetic pattern
is formed on the scale of the lattice constant, i.e. a microscopic pattern is formed. In
zero magnetic field this state is degenerate and represents a manifold of quasiperiodic
spin configurations.
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@ 5 (b)

Figure 5.11: (a) Monte-Carlo simulations. Top-view of the portion of the
magnetic structure in a sample of finite size for pure dipolar interaction, i.e.
R = J/D = 0. The microstructure has been obtained for a square sample of about
10500 vector spins on the Penrose lattice for D/kp T = 100. The spins belonging
to the perimeter of decagons (marked) form closed chains. The chains overlap ac-
cording to rules given in Fig. 5.2. (b) Experimental model. The perspective view
of the magnetic microstructure. The red arrows represent the orientation of dipolar
moments of magnets fixed onto the nodes of the Penrose tiling (rhombuses). The
magnets can rotate in the horizontal plane.

5.5.4 Analysis of Stability

The most interesting features of the decagonal structure relate to its stability. To
see the time-dependent changes in a magnetic structure in the simulations an extremely
slow annealing procedure has been applied in the Monte-Carlo simulations Ref. [145].
The overlapping rings of magnetic moments have been found to be very stable. The
decagons can have the same or opposite sense of rotation. However, once the sense
of the rotation has been chosen it remains unchanged. The magnetic moments inside
of the ring seem to be disordered. In zero magnetic field this state is degenerate and
represents a manifold of spin configurations. Orientations of disordered dipoles are not
static at temperatures k7" > 0.2D. They change continuously during the Monte Carlo
run while the decagon chains remain stable and the total energy oscillates around its
minimal value. In the experimental model the temperature has been simulated by
application of an alternating magnetic field. When a very weak field is applied the
magnetic moments inside of the rings begin to oscillate. The moments on the perimeter
of decagons, in contrast, remain stable to very high values of the field (of order of 1 T).
In addition to the alternating magnetic field a constant external magnetic field can be
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Figure 5.12: Two snapshots of a decagon from the experimental model Fig. 5.11

for different strength of the applied permanent in-plane magnetic field: (a) H = 0,

(b) H > 17T. Frustrated moments (highlighted) change their orientation while the
ring remain stable.

also applied to the structure (see the snapshots for different fields in Fig. 5.12). Even a
strongest possible in-plane magnetic field was not enough to destroy the experimental
decagonal pattern while the frustrated inner dipoles were immediately aligned (see
Fig. 5.12b). In the simulations the field necessary for the alignment of the chains must
be at least an order stronger than that needed for the alignment of the frustrated
moments. Thus, in the quasiperiodic magnetic structure the stable decagonal pattern
coexists with highly frustrated, glass-like phase.

Usually frustrated systems have either a continuously degenerated, periodic ground
state (antiferromagnetic spins on a honeycomb, a kagome, a triangular, a pyrochlore
lattice) or a completely disordered one (spin glasses). The superposition of both types
of frustration has not been reported neither for periodic nor for disordered systems.
Thus, a magnetic system on a Penrose tiling belongs to a new class of frustrated
systems where the degenerated ground state is aperiodic and consists of two parts:
ordered decagon rings and disordered spin-glass-like phase inside the decagons. The
Penrose tiling is no exception. The coexistence of ordered and frustrated parts is
characteristic for dipolar or antiferromagnetic ensembles on many of aperiodic tilings.
Two examples are given in Fig. 5.13.

5.6 Summary
In conclusion, magnetic ordering on quasiperiodic tilings for dominating ferromag-

netic, antiferromagnetic and dipolar interactions has been reviewed.
It has been shown that vector spin system with antiferromagnetic coupling on dif-
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Figure 5.13: Portions of the low-temperature pure dipolar configurations for an

Anti-Penrose (a) and a Tie-Navette (b) tilings. The color scheme defines an average

energy per magnetic moment: from lowest energy (red) to the highest energy (dark
blue). Red moments are stable while the blue ones frustrated.

ferent quasiperiodic tilings is locally frustrated. All spins can be divided into several
quasiperiodic (in our two-dimensional physical space) or periodic (in the corresponding
four-dimensional periodic hypercrystal) subtilings of different energy, which generally
do not coincide with a specific vertex type. The vector spin system admits a three-
dimensional noncollinear magnetic structure. The noncollinearity of the magnetic
configuration permits to minimize the degree of frustration and the total energy of
the system in comparison with the collinear case. The co-directional spins of every
subtiling reveal quasiperiodic ordering with a wave vector which is specific for a given
subtiling. The Tie-Navette tiling is not frustrated and admits collinear magnetic con-
figurations. For the short-ranged exchange interaction, this arises as a consequence of
the bipartiteness of the graph formed by connecting interacting pairs of spins; how-
ever, we observe that the antiferromagnetic order persists for the case of a long-range,
exponentially decreasing exchange interaction.

A ferromagnetic ordering in quasicrystals depends on the range of the interac-
tion. For the ferromagnetic exchange of a very short range the average magnetization
deviates significantly from the unity.

For pure dipolar interaction the magnetic pattern is highly degenerate. That state
represents a new class of frustrated systems where the structure is aperiodic and con-
sists of ordered, stable parts and an unstable, spin-glass phases.
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The scenario of the spin reorientation in two-dimensional films within first-order anisotropy approxi-
mation is theoretically studied by means of Monte Carlo simulations. The magnetic microstructure is
investigated as a function of the ratio of the perpendicular anisotropy energy to the dipolar one. If the
anisotropy dominates, out-of-plane domains will be found while in-plane vortices appear for a vanishing
anisotropy. In the range of comparable anisotropy and dipolar energies a complex domain pattern evolves
yielding a continuous transition between the two structures. The structure with equally distributed mag-
netic moment orientations is stable at the point where anisotropy and dipolar energies cancel each other.

PACS numbers: 75.70.Ak, 75.40.Mg, 75.60.Ch, 75.70.Kw

Over the last decade the investigation of the spin reori-
entation in ultrathin films has been a vivid field in basic
research. Experimentally, the studies reveal that the mag-
netic microstructure at the spin reorientation determines
the details of the switching of the magnetization and
thus the macroscopic behavior of the ferromagnet [1-5].
Theoretically, Monte Carlo simulations and analytical
studies have been performed in first-order approximation
of perpendicular magnetic anisotropy. In those investiga-
tions emphasis was put on the change of the magnetization
orientation as a result of competing anisotropy and dipo-
lar energies with temperature or thickness as a driving
parameter [6—15]. Phase diagrams were put forward and
noncontinuous magnetization changes postulated [6,9].
The evolution of the magnetic microstructures was not
studied in these numerical investigations.

An early analytical model of the spin reorientation, how-
ever, was mainly based on the microstructure that can
evolve when perpendicular anisotropy becomes weak [13].
Based on the assumption of a stripe domain pattern [16]
domain walls of finite width were introduced in the one-
dimensional model as the microstructure. It was found that
the existence of domain walls is crucial around the point
where anisotropy and dipolar energies cancel. At that point
the walls have microscopic dimensions, touch each other,
and create a wavelike magnetic microstructure.

In summary, it is obvious from the experiments that mi-
crostructures are important in spin reorientation transition
but from a theoretical point of view no general approach
has been made up to now. The aim of our investigation is
to achieve a general spatially resolved description of the
magnetization reorientation in the framework of compet-
ing dipolar and anisotropy energies for a given exchange
coupling. For this purpose, Monte Carlo (MC) simulations
have been performed to find the equilibrium spin configu-
ration of a monoatomic layer at a given temperature. The
approach is more general than the model Ref. [13] as nei-
ther a restriction to one dimension is made nor a particular
domain structure and wall profile is assumed.
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The Hamiltonian of the problem includes exchange,
dipolar interactions, and perpendicular anisotropy
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where J is the exchange coupling constant which is
nonzero only for nearest-neighbor spins, D the dipolar
coupling parameter, and r;; the vector between sites i
and j. The coefficient K, is the first-order anisotropy
constant and « is the lattice parameter. In the calculations
the ratio D/(Ja®) = 0.1 was used. Via simple scaling
arguments the realistic effective values for the ratio of
dipolar to exchange interactions can be achieved by
considering spin blocks of appropriate size [17,18]. We
have performed MC simulations for three typical values
of the ratio R = J(a®)/D, namely R = 10, R = 1, and
R = 0 (pure dipolar interactions with K finite). In all
simulations continuous transitions were found. We focus
on the results for R = 10 as the scales for Co/Au(111)
(5 nm mesh width and 500 nm sample size) are best
adopted to the microstructures that appear in the spin
reorientation transition.

For the extended MC computations we take a mono-
layer of classical magnetic moments on a regular, triangu-
lar lattice of about 10000 effective magnetic sites. This
corresponds to a surface orthogonal to the ¢ axis of a hep
lattice or to the (111) surface of a fcc structure. Assuming
the parameters of Co/Au(111) for the interatomic distance,
the exchange constant, and dipolar interaction constant, the
MC calculations present sample sizes of about 500 nm.
The magnetic moment is described by a three-dimensional
vector S of unit length. The calculations have been per-
formed for free boundaries. The commonly used peri-
odic boundary conditions are dismissed, since they might

5
Fij
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induce artificial patterns commensurate with the size of
the sample.

Because of the long-range character of the dipolar in-
teraction, special attention was paid to the following prob-
lems: (i) As the demagnetizing field is depending on the
shape of the sample we have to expect inhomogeneities at
the sample edges. We have investigated the dependence
of the microstructure on the sample geometry. The re-
sults for disc and square-shaped samples are identical for
f > 1.46 (vertical regime). For the configurations with
nearly in-plane moments the square-shaped samples have
been avoided to obtain the “easy-axis” to “easy-plane”
transition. (ii) Most of the computing time is spent on cal-
culating the dipolar interaction between all magnetic mo-
ments. Computing time can be saved by calculating an
effective dipolar field at one moment, which is created by
moments in close vicinity. This is the main idea of the so-
called cutoff in MC simulations. If the dipolar energy Ep
is comparable to or larger than the anisotropy energy E4
any cutoff will affect strongly the MC spin configuration
[17]. To prevent artificial effects due to the cutoff we have
considered the dipolar interaction of each magnetic mo-
ment with all the other moments, i.e., we used no cutoff.

The MC simulations have been performed in the fol-
lowing way: (i) A random moment configuration is taken
as the starting configuration representing the equilibrium
at infinite temperature. (ii) The next step is to perform a
MC relaxation at a finite temperature still above the Curie
temperature. (iii) This high temperature MC equilibration
is followed by a stepwise cooling until a low-temperature
configuration is reached. At each temperature step a MC
relaxation is performed and controlled by checking the
total energy evolution. The relaxation is stopped when the
energy does not show any remarkable drift over several
hundred MC steps per magnetic moment.

We have investigated the magnetic microstructure for
different ratios of the competing anisotropy and dipolar
energies. In contradiction to previous studies [6,9] we find
a continuous transition from vertical to in-plane orientation
of magnetization. It is the magnetic microstructure we will
discuss in the following that eliminates any discontinuity.
Our MC study gives the complete transition from the ver-
tical to the in-plane state of magnetization.

The results are presented as a low-temperature phase
diagram in Fig. 1. We have plotted the averaged values
of the vertical component S, and the squared value SZ2 of
the magnetic moment versus f with f = E,/Ep as the
ratio of perpendicular anisotropy energy E, to the dipolar
energy Ep. Usually the MC results are plotted as a func-
tion of K;/D. As the behavior of the magnetic sample is
governed by the total energy we find normalized energies
more convenient. The magnetostatic energy is defined as
the difference between the vertical single domain configu-
ration and a stray field free vortex structure. This energy
and the anisotropy energy is normalized with respect to the
number of moments and used for calculating the f value

19 June 2000
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FIG. 1. Plot of {(§2) and (S,) versus f. (S.) is the perpendic-
ular component of magnetization and f = E,/Ep is the ratio
of anisotropy energy to dipolar energy. The shaded areas sepa-
rate the phases (A, B, C, D). The phases are characterized by the
different microstructures, which are shown as insets in the dia-
gram. The microstructures have been obtained for disk-shaped
(f = 1.46) and rectangular samples ( f > 1.46) of about 10200
vector spins on a triangular lattice for k3T/J = 0.01.

given in Fig. 1. By this we avoid major effects of shape
and size on the graph and obtain a generalized behavior
of the spin reorientation in thin films. {S,) and (Szz) have
been obtained from the simulations. While (Sf) is propor-
tional to the total amount of the structure with out-of-plane
magnetization orientation, {(S;) reveals information about
the occupation of the two vertical states of magnetization.

As long as the perpendicular anisotropy E, is dominant
(f > 1.5), mesoscopic or even macroscopic domains with
vertical magnetization appear. This phase corresponds to
region A in Fig. 1 where (SZ2) is almost one and (S;) is
close to 0.4. Here the domain size is larger than the
size of the sample (~500 nm). The anisotropy is very
strong and within the mesh size the domain walls cannot
be described accurately. The energy difference between
the single domain state and the configuration with two do-
mains is very small (<0.3%) as the wall energy is under-
estimated. The energy gain is so small that the sample will
remain in a state with two domains if by chance two do-
mains are created during cooling. For (S,) = 0.4 a large
fraction (70%) of the domains is magnetized in one di-
rection while only 30% are oppositely magnetized. In the
interval 1.2 < f < 1.5 more and more vertically magne-
tized domains show up and become smaller with decreas-
ing f. For f ~ 1.4 a domain structure as shown in Fig. 2
is observed. The domain sizes in the range from 200 to
400 nm and the domain walls are small but broader than
in region A. In Fig. 1 this region is denoted by B. Do-
mains of that size have been experimentally observed close
to the reorientation transition in annealed Co on Au (111)
films [3]. When the domains get smaller the numbers of
up and down domains become almost the same and (S,)
approaches zero. (S2) decreases to about 0.7 instead of
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FIG. 2. Top view of the magnetic microstructure in a sample of
finite size, i.e., ~500 nm for Co/Au(111) (for more details, see
text). Dark and light-grey areas represent spin-up domains S, =
0.9]S| and spin-down domains S, = —0.9|S], respectively. The
domains are separated by walls (black). The ratio of anisotropy
energy to dipolar energy is f = 1.4; T ~ 5 K.

being close to 1. 'The deviation is due to a slight tilting
of the magnetization within the domains and a magneti-
zation rotation within the domain walls. In the domains,
however, the value of S, is larger than 0.9]S|. Further de-
creasing of f causes (SZZ} to approach zero continuously.
For (S2) = 0, all magnetic moments are lying in the film
plane (D in Fig. 1). The region before that particular f
ratio with {S,) = 0 and (S?) # 0 is denoted by C. The
walls get broader and broader and the wall width becomes
comparable to the domain size. At f = 1, adjacent walls
touch and no vertical domain persists any more. The
microstructure consists of moments of spatially varying
orientation. The arrangement of the magnetic moments is
illustrated in Fig. 3(a) for f = 1. A side view is shown
in Fig. 3(b). The magnetization rotates in a helicoidal
form along all three principal axes. The structure formed
is called the twisted phase. At this particular point the
magnetic moments are evenly oriented in all directions,
which is characteristic of the twisted configuration. This
would yield ($2) = (Syz) = (82) = 1/3 for a sample of
infinite extension. In the simulation (see Fig. 1), how-
ever, the obtained value is smaller, which is due to the
finite size of the sample. At the edges, the dipolar en-
ergy forces the moments into the film plane and parallel to
the sample edges which gives a slightly lower occupation
of the vertical component. The twisted phase corresponds
to the two-dimensional wavelike profile of the Yafet and
Gyorgy model [13]. The MC simulation, however, reveals
a complete three-dimensional structure as no limitations to
two dimensions were made. The twisted configuration is
the starting point for the formation of vortices, as will be
shown in the following.
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FIG. 3. Twisted spin structure for f = Es/Ep = 1: (a) Per-
spective view of an enlarged part of the sample. For clarity,
only one row out of two and one moment out of two in the row
are drawn as cones. (b) Side view of the cross section A-A.
T ~ 5 K. Same sample size as in Fig. 2.

Below f = 0.8 (region D in Fig. 1), both (S2) and (S.)
vanish revealing a complete in-plane orientation of the
magnetic moments. Minimization of the magnetostatic
energy causes vortex structures to form (Fig. 4). De-
tails of this kind of configuration have been discussed in
detail [17,19]. Between f = 1 and f = 0.8, the three-
dimensional twisted configuration transforms continuously
into the planar vortex structure.

Now we want to focus on some features of the magnetic
microstructure within the reorientation transition. The
first point is the stability of the twisted configuration. For
f =1 we have compared the energies for the twisted
structure with several in-plane (vortex, single domain) and
out-of-plane (with different periods of up and down do-
mains) configurations. At that particular point of the phase
diagram the twisted configuration remains the one with the
lowest energy among all considered microstructures. The
increase of the total energy per moment with respect to
the twisted configuration is 2.5 X 1072/ for the ideal in-
plane vortex, 3.5 X 1072/ for the in-plane single domain
ferromagnetic state. The excess value varies between
2.58 X 107'J and 1.7J for spin-up and spin-down striped
domain configurations with periods from 1/2 to 1/10 of
the sample size. These differences are comparable to the
dipolar or anisotropy energies of that state. For the twisted
phase the spin-spin correlation does not vanish on a large
scale, which confirms the low-temperature long-range
order of this structure [20].
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FIG. 4. Planar vortex spin configuration for the ratio f =
EAs/Ep = 0; T ~ 5 K. Same sample size as in Fig. 2.

In conclusion, we have demonstrated that in first-order
anisotropy approximation a continuous reorientation tran-
sition occurs from an out-of-plane magnetization to a vor-
tex structure. A new phase, the twisted configuration,
is found as an intermediate structure between these two
states. At the point where the dipolar energy is equal to
the perpendicular anisotropy energy the twisted configura-
tion represents the minimum of the free energy.
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The scenario of the magnetization reorientation in second-order perpendicular anisotropy
approximation is theoretically studied by means of Monte—Carlo simulations. The microstructure is
investigated as a function of the difference between first-order anisotropy and demagnetizing energy
Ke=K;—Ep and the second-order anisotroldy. An influence of the second-order perpendicular
anisotropy on the spin reorientation transition is found wKgp vanishes. The broadening and
coalescing of domain walls found earlier fikb="0 is prevented by positivk,. The domain wall

width and energy are determined Ky. ForK,>0 the transition via a canted vortex-like structure

is found which yields the smooth, continuous connection between the vertical domain structure and
the vortex structure with in-plane magnetization. 2001 American Institute of Physics.
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Experiments on spin reorientation transition in ultrathin second-order anisotropy constants. Via scaling argumen
films have revealed that the magnetic microstructure deterealistic effective values for the ratio of dipolar to excha
mines to a large extent the magnetic behavior of thenteractions can be achieved by considering spin block
system:~° Theoretically, the microstructure of the spin reori- appropriate siz&* For the extended MC computations,
entation transitiofSRT) has been investigated in first-order take a monolayer of classical magnetic moments on a |
approximation of perpendicular magnetic anisotr8yIn lar, triangular lattice of about 10 000 effective magnetic s
recent years, the importance of higher-order anisotropy corFhis corresponds to a surface orthogonal to ¢hexis of a
tributions for SRT in ultrathin magnets has been pointechexagonal-close-packed lattice or to tie1) surface of ¢
out®*® Phase diagrams were put forwdfd®® In con-  face-centered-cubic structure. The magnetic moment i
tinuum approximatiori! the reorientation either through the scribed by a three-dimensional vec®of unit length. The
canted phase or through the phase with coexistence of ifMC procedure is the same as in Ref. 8. To avoid artifi
plane and vertical magnetization has been postulated. Theeriodic patterns, we use open boundary conditions.
evolution of the magnetic microstructure caused by higher-  We have studied the magnetic microstructure in the
order perpendicular anisotropies, however, was not studiedisotropy space of the system. The latter is represented k

In this article, we present a spatially resolved descriptiordifference between first-order anisotropy and demagnet
of the magnetization reorientation in the framework of com-energy K¢=K,;—Ep and the second-order anisotrop§s,
peting dipolar, first- and second-order perpendicular anisottFig. 1). Positive K and K, favor vertical magnetizatio
ropy energies for a given exchange coupling. For this purwhile the negative energies impose an in-plane $&xte Eq
pose, Monte—CarlgMC) simulations have been performed
to find the equilibrium spin configuration at a given tempera-
ture. The approach is more general than the m8délas cantid K, verficil
neither a restriction to one dimension is made nor a particu- E,
lar domain structure and wall profile is assumed. The Hamil- €. \/ f ‘
tonian of the problem includes exchange, dipolar interac- %
tions, and perpendicular anisotropy of the first and the g twisted

second order N N
0.5E, s Y- f 05E, K

H:—J<_§_‘,> 5'5+D3 Srf 3 STST) Rsplane f_\
i i, ii

ij ij
coexistence

=]

+K,Y, sir? =K, sirt 6, &)

whereJ is the exchange coupling constant which is nonzero

. K R . FIG. 1. Micromagnetic phases of a monolayer of classical magnetic
Only for neareSt'nelghbor Spln@, the d|p0|ar COUplmg pa- ments as a function of the difference between first-order anisotropy

rameter and;; the vector between sitésandj. The coeffi-  demagnetizingenergy Ky=K,—E, and the second-order anisotrop.
cients K; and K, are correspondingly the first- and the The linesk,=—1/2K s andKs=0 separate vertical, canted, in-plane, i
coexistence phasdsee the text The reorientation transition is charact
ized by the evolution of magnetic microstructure between vertical an
@Electronic mail: vedmedenko@physnet.uni-hamburg.de plane phases.
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(1)]. In the region of “vertical” magnetizatioriFig. 1), we
find the following microstructure. Macroscopic domains with
vertical magnetization appear f&,> — 1/2K ;. The results
are the same as found before figh=058 In the interval
0.2E5<K<0.5Ep more and more vertically magnetized
domains appear and become smaller with decreasing 70
The domain walls, on the other hand, become broader with SSCS0% %
decreasingK ¢ (similar to Ref. 8. In the close vicinity of “\\\»\\\
Kei=0 (0<Kg<0.2Ep) the width of the domain walls is \N S
determined mainly b¥K,. This width is finite in contrast to ,
the first-order anisotropy approximation. The stronger the =SS~
second-order anisotropy the narrower are the walls. This:-,:"“"
means thaK, substituteK; in the definition of wall width - @
and energy?® At K 4=0 andK ,=0, adjacent walls touch and r'
no vertical domain persists anymore. The microstructure
consists of moments of spatially varying orientation. The ar¢g 5 canted spin structure fétuy=—0.4E, , K,=0.75E,, andkgT/J
rangement of the magnetic moments is illustrated in the cen=0.05. Perspective view of an enlarged part of the sample. For clarity
tral inset of Fig. 1. The magnetization rotates in a helicoidalone row out of two and one moment out of two in the row are draw
form along all three principal axes. The structure formed is*°"es-
called the twisted phase. At this particular point, the mag-
netic moments are evenly oriented in all directions which isfound forK ,=058is eliminated by positivé&k,. The domait
characteristic of the twisted configuratibn. wall width and energy are determined Ky. ForK,>0, the
For negativeK o andK ,< — 1/2K o (Fig. 1), the vertical  transition via a canted vortex-like structure is found wi
magnetization vanishes revealing a complete in-plane orienyields the smooth, continuous connection between the
tation of the magnetic moments. Minimization of the mag-cal domain structure and the vortex structure with in-p
netostatic energy causes vortex structures to form as th@agnetization. The investigation of the magnetic micros
magnetic anisotropy in-plane is zero. WK =0 the three- ture for negativeK, is under progress.
dimensional twisted configuration transforms continuously
into the planar vortex structure betwelR=0 andKq 4= D. P. Pappas, K.-P. Kaper, and H. Hopster, Phys. Rev. Le4, 3179
—0.2Ep . A continuous reorientation transition occurs from _(1990.
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Microstructure of the spin reorientation transition in second-order approximation

of magnetic anisotropy
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nstinu fiir Angewandte Physik, Jungiusstr: 11, 20355 Hamburg, Germany
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The microstructure of the magnetization reorientation in second-order perpendicular anisotropy approxima-
tion is theoretically studied by means of Monte Carlo simulations. The magnetic structure is investigated as a
function of K'i’ff: K| — Ep—the difference between first-order anisotropy and demagnetizing energy density—
and the second-order anisotropy energy density K,. For K,>0 the transition from a vertical to in-plane
orientation of the magnetization proceeds via the canting of magnetization. The canted phase consists of
domains. The domain microstructure establishes the smooth, continuous connection between the vertical do-
main structure and the vortex structure for in-plane magnetization. For K,<<0 a continuous reorientation via a
state of coexisting domains with vertical and in-plane magnetization is found. Within this state the size of the
vertical and the in-plane domains depends on the ratio of K‘i’ff and K, and changes continuously while the
transition proceeds. Both, K'l’ff and K, determine the width and energy of the domain walls. The broadening
and coalescing of domain walls found in first-order anisotropy approximation is prevented by the nonvanishing

second-order contribution.

DOI: 10.1103/PhysRevB.66.214401

Experiments on spin reorientation transition in ultrathin
films have revealed that the magnetic microstructure deter-
mines to a large extent the magnetic behavior of the
system." 7 Theoretically, the microstructure of the spin reori-
entation transition (SRT) has been investigated in first-order
approximation of the perpendicular magnetic anisotropy.® '°
The importance of higher-order anisotropy contributions in
the spin reorientation transition has been pointed out,'' '
and a phenomenological magnetic phase diagram in second-
order anisotropy approximation was introduced in 1959.*! In
this approximation only two different kinds of reorientation
have been postulated. The reorientation can proceed either
through a canting of the magnetization or through a state of
coexisting local minima for the in-plane and vertical magne-
tizations.

The first option is usually quoted as a second-order tran-
sition or a continuous reorientation. It is commonly believed
that the canted magnetic moments in that, so-called, “cone
state” are evenly distributed on the perimeter of the base of a
cone with no preferred direction of the in-plane components.
A possible microstructure of that phase has not yet been con-
sidered.

The second kind of transition proceeds via states of “‘co-
existing phases.” The reorientation through this path is often
classified as a discontinuous or first-order SRT. The classifi-
cation is due to the assumptions or the models that are made
to explain the flip of the moment. In the state of coexisting
phases both orientations of the magnetization have local
minima. Hence there is a possibility for the magnetization to
be oriented along one direction or the other. Two models of
occupation are commonly accepted leading to a discontinu-
ous flip, ie., the ‘“perfect delay” and the “Maxwell”
convention.'* Initially in both models the magnetization oc-
cupies the state of the lowest minimum. In the first model the
magnetization is believed to stay in that state until the corre-
sponding minimum of the free energy is completely erased.

0163-1829/2002/66(21)/214401(5)/$20.00
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The second model assumes that the orientation of the mag-
netization is always determined by the lowest lying energy
minimum. A sudden flop appears at the point where both
minima have equal depth. Both models have been discussed
in the literature for zero temperature. In the common discus-
sion of the discontinuous transition neither the finite tem-
perature nor any microstructure has been taken seriously into
account.

This paper focuses on the magnetic microstructure within
the spin reorientation, considering anisotropies in the
second-order approximation. This is performed by means of
computer simulations by a spatially resolved analysis of the
magnetization reorientation in the framework of competing
dipolar, first- and second-order contributions of the perpen-
dicular anisotropy for a given exchange coupling. For this
purpose Monte Carlo (MC) simulations have been performed
to find the equilibrium spin configuration at a given tempera-
ture. The approach is more general than any previous
attempt™'® as neither a restriction to one dimension is made
nor is a particular domain structure and wall profile assumed.
The films are described by an averaged anisotropy. An effect
of the layer dependence of the anisotropy on the magnetiza-
tion orientation is disregarded. The Hamiltonian of the prob-
lem includes the exchange, dipolar interactions, and perpen-
dicular anisotropy of the first and second order,

S-S, (Sir)(S;1yy)
Ho—s3 85 | 2SS )
() ij r?j r;

FK, Y sin0 1K, >, sin'd, )

where J is the exchange coupling constant which is nonzero
only for nearest-neighbor spins, D is the dipolar coupling
parameter, and r;; is the vector between sites i and j, 6 de-
notes the angle to the surface normal. The coefficients K

©2002 The American Physical Society
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FIG. 1. Micromagnetic phases of a monolayer of classical mag-
netic moments in the anisotropy space (second-order uniaxial an-
isotropy approximation) after Ref. 11 and 15. K’fff is the difference
between first-order anisotropy and demagnetizing energy density
Kﬁff: K,—Ej,, and K, is the second-order anisotropy density. The
lines K, — — %K‘l"ff and K;jff*O separate vertical, canted, in-plane,
and coexistence phases (see the text). The reorientation transition is
characterized by the evolution of magnetic microstructure between
vertical and in-plane phases. Please note the different scale on the
two axes.

and K, are correspondingly the first- and the second-order
anisotropy constants. Via scaling the realistic effective values
for the ratio of dipolar to exchange interactions can be
achieved by considering spin blocks of appropriate size.'®
For the extended MC computations we take a monolayer of
classical magnetic moments on a regular, triangular lattice of
about 10000 effective magnetic sites. This corresponds to a
surface of an hep(0001) structure or an fec(111) structure.
The magnetic moment is described by a three-dimensional
vector § of unit length. The Monte Carlo procedure is the
same as described in previous publications.®¢ To avoid ar-
tificial periodic patterns we use open boundary conditions.

We would like to discuss the results in the appropriate
anisotropy space. For the sake of simplicity the diagram is
given by K'fff —the difference between the first-order anisot-
ropy K and the demagnetizing energy density Ep—and the
second-order anisotropy energy density K, (Fig. 1). Thus
K‘fﬁf takes the magnetostatic energy contribution into ac-
count. £, is taken as the magnetostatic energy of an infinite
film, i.e., 27M é We want, however, to strengthen that in the
simulations the magnetostatic energies are calculated exactly
while the phase diagram helps to make the presentation of
the findings clearer. For positive K%/ and K, a vertical mag-
netization is favored, while negative values cause an in-plane
state [see Eq. (1)].

In the region of “vertical” magnetization (Fig. 1), for
positive K¢/ and K,>— 1K we find the following mi-
crostructure. For large Kfff the vertically magnetized do-
mains are very large. With K/ decreasing more and more
vertically magnetized domains appear, i.e., the domain size
shrinks. Simultaneously the domain walls become broader.
This result is similar to the findings in first-order anisotropy
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approximation.*'’ Domains of that size have been experi-
mentally observed close to the reorientation transition in an-
nealed Co/Au(111) films.® 3 If K, is large the domain size
and the domain wall width are mainly determined by K.
The trend is that the stronger the second-order anisotropy the
narrower are domain walls and the larger the domains. In the
close vicinity of Kfff =0 with nonvanishing K, the wall
width is finite in contrast to the infinite sinuslike profile of
the magnetization in the first-order anisotropy approxima-
tion. This means that K, substitutes for K, in the definitions
of the wall width and energy which were already put forward
in a theoretical paper'” some time ago. For K%/ ~0 and K,
=0 the microstructure consists of moments of spatially vary-
ing orientation. The arrangement of the magnetic moments is
illustrated in the central inset of the Fig. 1. The magnetiza-
tion rotates in a helicoidal form along all three principal
axes. The structure that forms is called the twisted phase. At
this particular point the magnetic moments are evenly ori-
ented in all directions which is characteristic of the twisted
configuration. '’

For negative K and K,< — 1K (the “in-plane” re-
gion in Fig. 1), the vertical magnetization vanishes and a
complete in-plane orientation of the magnetic moments ex-
ists. To minimize the magnetostatic energy vortex structures
form as the magnetic anisotropy in the film plane is set to
zero. In the “in-plane” region K, has only a minor influence
on the microstructure compared to the former situation with
K97>0.

In the following we will discuss situations where the mi-
crostructure is strongly dominated by the interplay of Kfff
and K. At first for K¢<0 and K,>— 1K (inset canted
in Fig. 1) the negative K ‘l’ff competes with the positive K.
The energy minimization requires a canting of the magneti-
zation to the film normal.'’ 31318 In fact we find a canting
of magnetic moments in the simulation (Fig. 1). The vertical
component of magnetization changes continuously from 1 at
K =0 10 zero at Ky~— 3K . In the literature this phase
is called the “cone state” as it is generally assumed that the
canted magnetic moments are distributed uniformly on a pe-
rimeter of the base of a cone. We find, however, that the
canted magnetic moments form domains with in-plane com-
ponents oriented along the principal directions in the lattice
plane although the in-plane anisotropy was set to zero. This
is at variance with Ref. 19, where no preferred direction of
the in-plane components was found. The principal axes of
the triangular lattice become the in-plane easy axes of mag-
netization due to dipolar interaction.”’ We may conclude that
in the canted phase the ferromagnetic system is already af-
fected by negligibly small in-plane anisotropies. The in-plane
anisotropy causes the appearance of domains with magneti-
zation components along distinct in-plane directions. A top
view of the domain structure in the canted regime is pre-
sented in Fig. 2. In Fig. 2(a) different shades of gray repre-
sent different orientations of the magnetic moments in the
film plane. In Fig. 2(b) the different shades of gray give the
up and down components of the magnetization. The fre-
quency distribution of the in-plane component of magnetiza-
tion in the down-canted domains is given in Fig. 2(c). This
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FIG. 2. Top view of the magnetic microstructure in the canted
phase for K= 04E,, K,=0.65E,, and kzT/J=0.05. (a) A
top view of the microstructure. In this image the in-plane compo-
nent of magnetization is coded in gray. Light-gray color gives the
part of the sample with an in-plane component pointing mainly to
left or right in the plane of drawing (azimuthal orientation of 0° or
180°). The dark-gray color indicates the regions having the in-
plane components of magnetization at the angle of 60° or 240° to
the horizontal within the plane of drawing. (b) Out-of-plane com-
ponents of magnetization in the same sample. Dark and light-gray
arrows represent canted-down and canted-up domains correspond-
ingly. (c) The frequency distribution of the in-plane component of
magnetization. The abscissa gives the angle of the magnetization to
the horizontal within the plane of drawing. (d) The frequency dis-
tribution of the out-of-plane component of the magnetization. The
abscissa gives the component of the magnetization along the nor-
mal.

demonstrates that two main in-plane orientations of the mag-
netization (around 240° and 120°) appear. For the vertical
component the frequency histogram [Fig. 2(d)] reveals that
the angle to the film normal is identical for all moments in
the domains. The angle is equal to the value one obtains from
the analytical treatment in case of

ie.,

Ki’ff
Oy ~arcsin\/ — Kiz

The small amount of deviating orientations is found in the
domain walls. A three-dimensional representation of the
magnetic moments is given in Fig. 3.

We also find that in the canted state the domain size in-
creases with increasing K, for a given K fff . 'The width of
the domain walls depends on both K‘[ff and K,. The walls
become broader with the ratio K, /K‘ff 7 approaching — 1/2.
The broadening of domain walls causes a slower rotation of
magnetization within the wall. As the canting angle is also
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FIG. 3. Perspective view of the canted spin structure for K'fff
=—04E,. K,—0.65E,, and kzT/J—0.05. For clarity only one
row out of two and one moment out of two in the row are drawn as
cones.

increasing with K, /K j’ff approaching  1/2 the walls fade
away and domains and walls become indistinguishable. The
latter process transforms the structure into a planar vortex
which is the charge-free magnetization pattern. Hence a con-
tinuous reorientation transition through the phase of canted
domains occurs. In this region K, has a strong influence on
the microstructure of magnetization.

The third possible path for the reorientation of the mag-
netization proceeds via the forth quadrant of the anisotropy
space (K>0,K,<0). In this region (inset coexistence
in Fig. 1) we find that the average vertical component
of magnetization goes gradually from almost unity above
K,= 3K to 7ero at K#/=0. This continuous change of
the magnetization component can lead to the erroneous con-
clusion that the reorientation proceeds via the canting of
magnetization. The canting phase, however, does not exist in
this part of the anisotropy space.!"!*> In the simulation we
find a magnetic microstructure that consists of domains mag-
netized perpendicular and in plane, i.e., a coexistence of the
two phases [histogram, Fig. 4(b)]. Hence the very existence
of two local minima in the free energy'! leads to the appear-
ance of domains with vertical and in-plane orientations of the
magnetization. The borderlines of the phase of coexisting
domains in the calculations are in good agreement with the
experimentally defined borders of the “gray” zone of SRT in
Co/Au(111).* The first experimental manifestation of coex-
isting domains in Co/Au(111)/W(110) was published
recently.7

In our simulation we find that the magnetic transition is
continuous. Our results rule out the models discussed in lit-
erature for 7T=0 K, i.e., the “perfect delay” and the “Max-
well” convention.'* A typical microstructure of a state of
coexistence phases and the frequency distribution of the ver-
tical component of magnetization for that state are presented
in Fig. 4. The histogram [Fig. 4(b)] demonstrates that the
majority of the magnetic moments build an angle of either 0
or = /2 with the film normal, i.c., vertical and in-plane
magnetized domains are formed. The domain walls cause a
small amount of moments with deviating orientations. The
depths of the local minima of the free energy depend on the
values of K¢/ and K,.!' Tn our simulations we find an
increase/decrease of the in-plane/vertical domains size with
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FIG. 4. Microstructure of the state of coexisting phases for
KH=E,, Ky=—08Ep, and kz1/J=0.05. (a) Perspective view
of an enlarged part of the sample. For clarity only one row out of
two and one moment out of two in the row are drawn as cones. (b)
Frequency distribution of the magnetization orientation. The popu-
lation frequency is given as a function of the magnetization com-
ponent along the normal. The plot is generated from the simulation
shown in a.

decreasing K%/ . This means that the frequencies of popula-
tion of the two phases of the magnetization depend on the
ratio K/K,.

A top view of the microstructures of the state of coexist-
ing phases is presented in Fig. 5. Figure 5(a) represents the
situation where the vertical magnetization is favored, which
leads to the preponderance of vertically magnetized domains.
On a first glance the in-plane domains could be misleadingly
interpreted as walls. The magnetization profile, however, de-
viates completely from that of a domain wall. While in the
wall a continuous tilting of the magnetization is expected, we
find that all spins lie in the film plane except for a thin
region, i.e., a wall, along the domain contours [Fig. 5(a)].
The walls are not exactly described in our simulations as the
mesh size is too large. If the in-plane orientation is more
favorable (deeper minimum) an in-plane vortex-like struc-
ture appears [Fig. 5(b)]. The vortex-structure is a conse-
quence of the minimization of the magnetostatic energy as
no in-plane anisotropy is assumed. The vertical domains re-
main in the core of the vortices and at the sample edges.
Again a continuous transition between adjacent phases is
achieved via the microstructure.

‘We have explored the population of the different states of
the coexisting phases as a function of time and size of the
sample. The relative population of the in-plane and vertical
magnetizations persists for every relaxation process for a
given geometry. The spatial arrangement of the vertical and
in-plane domains, however, can change with time, i.c., the

6. Papers on Spin Reorientation Transition
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FIG. 5. Top view of the microstructure of the state of coexisting
phases and corresponding energetic potential. Dark- and light-gray
areas represent spin-up and -down domains correspondingly. Black
arrows show the in-plane domains, kz77J=0.05. In (a) The situa-
tion of a deeper minimum for the vertical phase (K, — 70.8K'13ff)
is shown. The region between the vertical domains are in-plane
magnetized domains. (b) Exhibits the microstructure for the situa-
tion that the energy minimum for the in-plane phase is deeper
(Ky=— l.lK‘fff). Note that vertical domains remain at the edges
and in the center of domains with “‘rotating” in-plane magnetiza-
tion. They will shrink to the center of vortices found in the in-plane
phase.

number of Monte Carlo steps. This means that snapshots of
the equilibrium microstructure can differ during the same
Monte Carlo procedure. Different spatial arrangements of
domains also depend on the starting conditions for identical
relaxation procedures.

The multidomain state of the coexisting phase transforms
into a single domain state when the sample size is smaller
than the typical domain size for a given K'{ff/Kz. In that
situation the ratio of K%//K, defines the probability to find
the sample in a vertical or an in-plane magnetized single
domain state. Domains with an in-plane magnetization do
not show a vortex structure in small samples. The mon-
odomain configuration is energetically preferred as the gain
in the dipolar energy is lower than the loss in the exchange
energy for small structures. !

In conclusion, a strong influence of the second-order per-
pendicular anisotropy on the microstructure of the spin reori-
entation transition is found. For K,>0 a transition via a
canted domain structure is established that yields a smooth,
continuous connection between the vertical domain structure
and the vortex structure with in-plane magnetization. For
K,<0 a continuous reorientation via a state of coexisting
vertical and in-plane magnetized domains occurs. The sizes
of the vertical and the in-plane domains depend on the ratio
of K‘l’ff and K,. The spatial arrangement of the domains can
change with time, while the frequency distribution of the
in-plane and the vertical phases is invariable.

214401-4



MICROSTRUCTURE OF THE SPIN REORIENTATION . ..

*Corresponding author. Email address: vedmedenko @ physnet.uni-
hamburg.de

'D. P. Pappas, K.-P. Kamper, and H. Hopster, Phys. Rev. Lett. 64,
3179 (1990).

2R. Allenspach and A. Bischof, Phys. Rev. Lett. 69, 3385 (1992).

*H. P Oepen, Y. T. Millev, and J. Kirschner, J. Appl. Phys. 81,
5044 (1997).

‘H.P. Oepen, M. Speckmann, Y. T. Millev, and J. Kirschner, Phys.
Rev. B 55, 2752 (1977).

SM. Speckmann, H. P. Oepen, and H. Ibach, Phys. Rev. Lett. 75,
2035 (1995).

oM. Farle, W. Platow, A. N. Anisimov, B. Schulz, and K. Baber-
schke, J. Magn. Magn. Mater. 165, 74 (1997).

7T. Duden and E. Bauer, in Magnetic Ultrathin Films, Multilayers
and Surfaces, edited by J. Tobin, D. Chambliss, D. Kubinski, K.
Barmak, P. Dederichs, W. de Jonge, 'I. Katayama, and A. Schuhl,
MRS Symposia Proceedings No. 475 (Materials Research Soci-
ety, Pittsburgh, 1997), p. 273.

8Y. Yafet and E. M. Gyorgy, Phys. Rev. B 38, 9145 (1988).

9 A. B. MacIsaac, K. De’Bell, and J. P. Whitehead, Phys. Rev. Lett.
80, 616 (1998); K. De’Bell, A. B. MacIsaac, I. N. Booth, and 7.
P. Whitehead, Phys. Rev. B 55, 15108 (1997).

105

PHYSICAL REVIEW B 66, 214401 (2002)

9E, Y. Vedmedenko, H. P. Oepen, A. Ghazali, J.-C.S. Lévy, and 1.
Kirschner, Phys. Rev. Lett. 84, 5884 (2000).

H, B. G. Casimir, J. Smit, U. Enz, I. F. Fast, H. P. J. Wijn, E. W.
Gorter, A. J. W. Duyvesteyn, J. D. Fast, and J. de Jong, J. Phys.
Radium 20, 360 (1959).

12¢. Chappert and P. Bruno, J. Appl. Phys. 64, 5736 (1988).

13H. Fritzsche, T. Kohlhepp, and U. Gradmann, J. Magn. Magn.
Mater. 148, 154 (1995).

143, Nieber and H. Kronmiiller, Phys. Status Solidi B 165, 503
(1991).

1Y, Millev and T. Kirschner, Phys. Rev. B 54, 4137 (1996).

1E Y. Vedmedenko, A. Ghazali, and J-C. S. Lévy, Phys. Rev. B 59,
3329 (1999).

17H. Triuble. O. Boser, H. Kronmiiller, and A. Seger, Phys. Status
Solidi 10, 283 (1965).

18p ] Jensen and K. H. Bennemann, Phys. Rev. B 52, 16 012
(1995); K. Baberschke and M. Farle, J. Appl. Phys. 81, 5038
(1997).

R, Allenspach, J. Magn. Magn. Mater. 129, 160 (1994).

207.-C. 8. Lévy, Phys. Rev. B 63, 104409 (2001).

2LW.F. Brown, in Selected Topics in Solid State Physics, edited by
E. P. Wohlfarth (North-Holland, Amsterdam, 1962), Vol. L.

214401-5



106

H Available online at www.sciencedirect.com

tﬁ? SOIENCE@DIHEOT'

4

ELSEVIER

Journal of Magnetism and Magnetic Materials 256 (2003) 237-242

6. Papers on Spin Reorientation Transition

M journal of

magnetism
and
magnetic
materials

www.elsevier.com/locate/jmmm

Size-dependent magnetic properties in nanoplatelets

E.Y. Vedmedenko®®*, H.P. Oepen?, J. Kirschner®

& Institut fiir Angewandte Physik, Jungiusstrasse 11 Uni-Hamburg, 20355 Hamburg, Germany
Y Max-Planck-Institut fiir Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

Received 8 April 2002; received in revised form 15 July 2002

Abstract

We demonstrate that the discrete dipolar sums can be separated into two contributions: thickness- and geometry-
dependent parts. The geometry-dependent part is analogous to the shape dependence of the continuum approach. The
correct normalization of the dipolar energy eliminates the apparent discrepancies of the discrete summation with the
experimental results and continuum Maxwell theory. The superposition of the two contributions explains a new
phenomenon, i.e. the size-dependent spin reorientation transition and/or enhancement of the effective perpendicular

anisotropy.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Magnetism at small length scales has lately
attracted considerable scientific attention (see for
review Ref. [1]). Interesting physical phenomena
occur in magnets with all three dimensions on the
nanometer scale. We call such structures ultra-low
dimensional as they have small but finite dimen-
sions. An array of such ultra-low-dimensional
magnetic particles can potentially provide a huge
gain in information storage density (see for review
Ref. [1]). Hence, the understanding of the micro-
magnetic ordering in ultra-low-dimensional ob-
jects is of high significance for the fundamental

*Corresponding author. Institut fiir Angewandte Physik,
Jungiusstrasse 11 Uni-Hamburg, 20355 Hamburg, Germany.

E-mail  address:  vedmedenko@ physnet.uni-hamburg.de
(E.Y. Vedmedenko).

physics of magnetic materials as well as for
technological applications. The increased ratio of
boundary to non-boundary atoms in such struc-
tures can lead to unusual physical phenomena.
The orientation of magnetization in a magnet is
determined by the balance between the exchange
energy, the magneto-crystalline anisotropy and the
dipolar energy. The strong exchange interaction
tends to line up the magnetic moments in the same
direction but does not prefer any orientation in
space. In ultra-thin platelets with lateral size L and
thickness 7, magnetization configurations are
mainly determined by the competition between
the anisotropy and the dipolar energy. In ultra-
thin objects the surface(interface) contribution of
the magneto-crystalline anisotropy is often re-
sponsible for perpendicular magnetization. The
angle dependence of the free energy of such an
uniaxial system can be written as Ex =

0304-8853/03/$- see front matter © 2002 Elsevier Science B.V. All rights reserved.
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Ky, sin® 0, where K; is the first-order anisotropy
constant and 0 is the angle to the film normal [2].

The dipolar interaction is smallest when all
magnetic moments compensate each other and the
total magnetic charge is equal to zero. The dipolar
energy Ep increases whenever magnetic poles are
created in a material or at the boundaries. In
magnets with L>¢, Ep prefers an in-plane
orientation of the moments. The contribution of
Ep to the total anisotropy energy is called shape
anisotropy. The shape anisotropy of a finite body
(AEp) is described by the demagnetizing tensor N:
AEp = N - 2nM3, where Mg is the saturation
magnetization and 2znM3 the shape anisotropy of
the infinite continuous magnet. Neglecting the
discrete nature of matter, N can be analytically
calculated for uniformly magnetized bodies like
ellipsoids.

2. Demagnetizing factors in continuum and discrete
approach

Sufficiently large and thin, disk-shaped platelets
(L> 1) are usually considered to have the demag-
netizing factors of an oblate spheroid (special case
of ellipsoid).

The demagnetizing factors of such spheroids are
well known [3,4]. For an oblate spheroid the shape
anisotropy depends only on the ratio k = L/t and
can be represented by an universal curve AEp =
f(k) (Fig. 1). For the sake of simplicity, the shape
anisotropy energy is normalized with respect to
2nM$ in Fig. 1. AEp deviates from unity only for
structures where L and ¢ are comparable.

In literature [5-9]. it is argued that in the limit of
a few atomic layers the approximation of the film
system by a magnetic continuum fails. The ultra-
thin magnet must be regarded as an assembly of
discrete magnetic dipoles on a crystalline lattice.
For a laterally infinite discrete lattice of magnetic
point-dipoles calculations of the dipolar interac-
tions have shown that the dipolar (demagnetizing)
field is not uniform as in the continuous ellipsoid
approximation. The dipole field changes with
depth and depends on the film thickness. The
shape anisotropy of every atomic plane for
different lattices has been calculated [7-11]. The

200 400 600 800 1000
k

Fig. 1. Analytically calculated magneto-static energy densily
AEp =(N| — Nj)-2nM2 as a function of the dimensional
aspect ratio k= L/t for the oblate spheroid in continuum
approximation. The demagnetizing energy is normalized with
respect to 2mMZ.

average AEp for a film containing Ny atomic
layers  has  been  defined as AEp=
ZfiN]IL AED,-/NML — C(NML) . AED Here NML =
t/d with d for the distance between two successive
atomic layers. AEp of an infinite film can deviate
from AEp of a continuum film by more than 10%.
The deviation has been attributed to the change of
the demagnetizing tensor N = ¢(f)- N. The cor-
rected demagnetizing factors for vertically magne-
tized infinite ultra-thin films N, = Ny are listed
in Refs. [7-9]. The in-plane demagnetizing factors
are calculated as N = Nyy = Nyy = (1 — N,)/2
[8,9] as the sum rule for the demagnetizing field
states that the diagonal sum of the demagnetizing
tensor is unity inside the sample, i.e. Nyy + Nyy +
Nzz = 1. From data given in Refs. [8,9] one can
deduce that the in-plane demagnetizing field (and
demagnetizing factors) of an infinite ultra-thin film
is no longer zero, which is in disagreement with
Maxwell’s equations. In Ref. [7] this problem is
avoided by assigning the change of the demagne-
tizing energy as an anisotropy contribution.
Nevertheless, the authors claim that the N-tensor
is thickness dependent. For the simple cubic lattice
N is even negative as N | > 1. All these statements
are in contradiction with the continuum theory
where the demagnetizing factor is introduced as a
geometric parameter. The discrepancies of the
continuum theory and the discrete calculations
have lead to the opinion that the discrete summa-



108

6. Papers on Spin Reorientation Transition

E.Y. Vedmedenko et al. | Journal of Magnetism and Magnetic Materials 256 (2003) 237-242 239

tion of point-dipole fields can give questionable
values of the demagnetization factors [9]. In this
paper, we will show the connection between the
classical continuous ellipsoid approach and the
discrete dipolar model and solve the apparent
controversy.

3. Results

We have investigated the size- and thickness
dependence of the shape anisotropy in the ultra-
thin platelets numerically. The platelets are disks
of finite diameter L and thickness t = Ny -d ona
discrete lattice. We have considered the samples
with dimensional ratio k>40, i.e. with L>¢. The
shape anisotropy has been calculated as the
difference between the dipolar energy of the
vertical and the in-plane single domain state:
AEp = Ep(L) — Ep(]). The dipolar energy of 1-
6 monolayer (ML) thick disks has been calculated
by direct lattice summation. Note that the discrete
lattice sums are absolutely convergent due to the
two-dimensional configuration of dipoles and
finite sample dimensions.

The results of the calculations for a triangular
lattice with HCP stacking are shown in Fig. 2 as a
function of k = L/t for 1-4 ML thick films. The

spheroid
1.0 p ~  _am
ST m
‘r“"og o o mmameme 2 ML
"5 T
| E,=0.91"27M 2
N y
) v 1ML
wd 4
< 0.84;
¥
d
0.7 kC— pheroid kC-hcp 1ML

0 100 200 300 400 500

k

Fig. 2. Numerically calculated demagnetizing energy density
AEp as a function of the dimensional aspect ratio k = L/d for
1-4 ML films on a triangular lattice with HCP stacking. AEp is
normalized with respect to the demagnetizing energy in the
continuum limit 2rM3. The straight horizontal line corresponds
to the perpendicular magneto-crystalline anisotropy Ea. The
dashed vertical lines denote the critical size kc of the
reorientation.

calculated energies are normalized with respect to
2nM3. For other lattices similar results were
obtained.

The exact calculation of the dipolar sums
deviates strongly from the magneto-static energy
obtained from the continuum ellipsoid-ansatz
(Fig. 2). The energy depends on thickness and size
(AEp = f(L, 1)) and not solely on the ratio k. The
demagnetizing energy of a platelet of 100 x 1, for
example, is 1.2 times smaller than that of a platelet
of 300 x 3 although k& =100 for both and the
demagnetization factors should be the same
(Fig. 2). AEp is changing significantly up to high
k-ratios (k= 500) while in the continuous ellipsoid
model AEp, is almost constant and equal to 2nM3
for large k. With increasing thickness the differ-
ences between the individual AEp(k,7) curves
vanish. For ¢ > 5ML Ep(k, ) merges into AEp —
f(k). The function AEp = f(k) for t>5ML is
close to that of the continuous spheroid. The
interpolation of AEp = f(L, ) to infinite L gives
values which are in good agreement with the data
given in Refs. [7,8] for infinite expansion. Thus, the
rigorous calculation of the dipolar sums reveals
that the shape anisotropy is size dependent. The
size dependence of AEp is in disagreement not
only with the conventional shape effect AEp =
f(k) but also with the common assumption that
the dimensions are only important for Lz ¢. It has
been never considered before that in the range
L>t the size of the sample can define the magnetic
behavior. Next we want to solve the puzzle that
emerges from the exact calculation.

4. Discussion

Generally, the total demagnetizing energy AEp
is normalized to 2nMZ = const. The deviation of
the total demagnetizing energy from 2nM3 is then
attributed to the demagnetizing tensor N: AEp —
N -2nM3. Following this assumption, however,
means that one has to postulate that N depends
not solely on geometry (i.e. ratio k) but also on ¢,
as claimed in Ref. [7], and on L. This assumption is
in contradiction to the concept of the demagnetiz-
ing factors based on Maxwell theory, as already
mentioned.
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On the other hand, the dipolar energy of the
atoms in the top most layers of the film deviates
from that of the bulk atoms. The ratio of
boundary to non-boundary atoms in such struc-
tures is increased. Consequently, the average
demagnetizing energy of an ultra-thin film can
deviate from 2z M3 even if N is unchanged. Hence,
we may conclude that the discrepancy between the
continuous ellipsoid AEp and the discrete AED
approximation may have different reasons, i.e. N
(geometry effect), (2#M3) or the combination of
both. In Refs. [7-9] it was not possible to
distinguish between the three cases as those
calculations are related to objects of the same
shape, i.e. infinite ultra-thin films (k = c0). In our
calculations, the geometry of the sample can be
varied from k = 1 to oo. Thus, we can analyze all
possible situations explicitly.

Taking the assumption AEp = N-AEp as in
Refs. [7-9] we find Nyy + Nyy + Nzz#1 for
k<oo. This means that the sum rule for the
demagnetizing field fails. Assuming AEp —
(2AM3) = X - AEp we find that (27M3) should
strongly decrease with decreasing size for a given
sample thickness. This outcome makes no sense as
for t=const the dipolar sum differs only for
magnetic moments at the sample edge [6] and X
should be a constant as long as L>t. Besides, it is
unreasonable to neglect completely the geometry
effects. The only remaining explanation of the
inequality AEp #AEp is the superposition of the
thickness dependence of the dipolar sums and the
geometry effect AEp = X - N AEp. In order to
decide whether this statement is true or not it is
necessary to separate both effects, to compare
N,(2#M?) with N,2zM3, and to check the sum
rule for N.

In the ellipsoid approximation N; =1 and
N =0 for laterally infinite ultra-thin films of
any thickness. Assuming N (o) = N, (c0) =1
the ratio AEp(L = w0)/AEp(L = o) is nothing
else but the factor X. As discussed before, X is a
constant for a constant thickness r<L. Hence,
dividing AEp by X for finite samples of different L
but equal ¢, the pure geometry effect ALp/X =
N AEp can be separated.

The normalized curves AEp/X = f(k) are given
in Fig. 3. The functions are identical for all

thickness and represent N(k). Thus, an universal
curve is found which one must expect from the
classical continuum approximation as shape effect.
More than that, the demagnetizing factors ex-
tracted from Ep(Ll)/X =N, 2zM} and
ED(H)/X = NH 27‘CM§ give Z\Nfl +2~NH =1 for
all L and ¢, i.e. the sum rule for N is confirmed.
The demagnetizing factors are reasonable and
close to those of the spheroid. The discrete model,
however, gives a geometry dependence that
saturates at higher k-values compared to the
spheroid model. The reason for the minor
difference between N and N is the fact that the
discrete model describes precisely the geometry
which deviates from that of an ideal ellipsoid.
Thus, the rigorous calculation of the dipolar sums
for finite ultra-thin magnets are in accordance with
the continuum approach.

The discrete summation, however, is more
precise as it includes the thickness-dependent
inhomogeneity of the dipolar energy while in the
ellipsoid approximation 2nM3 is introduced as a
constant. The values calculated in Refs. [7-9] are
not the demagnetizing factors but the coefficients
X as those calculations have been performed for
infinite extended films with equal N. We have
demonstrated that in contrast to the continuum
ellipsoid approximation the demagnetizing energy
in finite ultra-thin magnets is a two-variable
function AEp = f(L,f). The discrete dipolar
sums can be separated into two contributions:

1.0+ spheroid —

k=L

0 100 200 300 400 500

Fig. 3. Comparison of the shape effect of a continuous oblate
spheroid and the geometry-dependence extracted from the
numerically calculated AEp of disks with thickness of 1-6 ML

on a triangular lattice with the HCP stacking. The demagnetiz-
ing energy is normalized with respect to 23,




110

6. Papers on Spin Reorientation Transition

E.Y. Vedmedenko et al. | Journal of Magnetism and Magnetic Materials 256 (2003) 237-242 241

thickness- and geometry-dependent parts. The
geometry-dependent part is analogous to the shape
dependence of the continuum approach.

We have checked the geometry effect and -
dependence of the demagnetizing energy for other
lattice types. The results are presented in Tables 1
and 2. In Table 1, the demagnetizing factors of the
platelets for 40<k<1000 are listed. N depends
only on the ratio k. The geometry effect does not
depend on a lattice type. N is always lower than
unity and identical for all lattices. The coefficients
X found numerically for Ny, <6 are given in the
Table 2. They depend on the type of the lattice and
on thickness. The calculated X-values are in good
agreement with values of the “‘reduced anisotropy”
given in Ref. [7]. In contrast to N, the coefficients
X can be lower or larger than unity. Thus, neither

Table 1
The demagnetizing factors calculated numerically for ultra-thin
disks

k= L/l NH N N NH
1000 0.001 0.998 0.997
600 0.003 0.995 0.992
350 0.005 0.989 0.984
250 0.007 0.985 0.978
220 0.008 0.983 0.975
200 0.009 0.982 0.973
180 0.010 0.981 0.971
160 0.011 0.979 0.968
140 0.012 0.976 0.964
120 0.014 0.973 0.959
100 0.016 0.968 0.952
80 0.019 0.961 0.942
60 0.024 0.951 0.927
40 0.034 0.932 0.898
Table 2

N nor X are size dependent. However, the
superposition of the geometry effect and the
thickness dependence of 2nMZ leads to the new
behavior, i.e. L and ¢#-dependence of the demagne-
tizing energy. The L, r-dependence is different for
different lattices.

Tables 1 and 2 are universal to find the L,¢-
dependence of the demagnetizing energy for disks
with 40<k<1000 and thickness Ny = t/d<6.
As example, we find the demagnetizing energy of a
platelet of diameter L = 750a and thickness
Nwvmr. =3 on FCC[100] lattice. The distance
between two subsequent layers is d = a/ \/E (see
Table 2). Hence, t = Ny - d = 3a/\/§ and k =
L/t~350. We find the coefficient X = 0.922 from
Table 2and N | — Ny = 0.984 from Table 1. Thus,
the demagnetizing energy AEp = (N, — N))- X -
2eM3~0.9 2nMZ, ie. 10% less than expected
from the continuum theory. Coefficients X for
platelets with Ny, > 6 can be derived from Ref.
[7]. However, the values of X for thicker films have
only minor deviations (<0.2%) from the values
given for Nyp — 6. X=1 for Ny >6. The
demagnetizing factors for platelets with & > 1000
coincide with those of an oblate spheroid, i.e. are
also close to unity [3,4]. Hence, the demagnetizing
energy merges into 2nM3 for Nyi >6 and
k= 1000.

5. Size-dependent spin reorientation transition

A manifestation of the above model is the size-
dependent spin reorientation transition and the
apparent enhancement of the perpendicular

The thickness-dependent coefficients X calculated numerically for the ultra-thin platelets with thickness Ny, <6 and the distances d
between two successive layers. The apparent differences between the coefficients X for the structures having square lattice at 1 ML
(SC(100}), BCC(100), FCC(100)) are due to the different lattice constants a

Lattice Ny =1 Ny =2 Ny =3

NuL =4 NmL =5 NvL =6 d=4

Nvo
SC[100] 1.079 1.039 1.026 1.020 1.016 1.013 a
BCC[110] 0.924 0.962 0.975 0.981 0.985 0.987 a 2/3
BCC[100] 0.564 0.783 0.856 0.892 0914 0.929 ll/\/§
FCC[111] 0.931 0.966 0.977 0.983 0.986 0.988 a/\/2/3
FCC[100] 0.765 0.883 0.922 0.941 0.953 0.961 a/\/i
HCP[0001] 0.932 0.966 0.976 0.982 0.986 0.988 am
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anisotropy in ultra-low-dimensional objects as
reported recently [12]. In ultra-thin objects, the
surface/interface anisotropy Ea which often favors
out-of-plane magnetization is competing with the
dipolar energy Ep which prefers an in-plane
orientation. The magnetic anisotropy is a local
property and constant for a given thickness. Thus,
it can be represented by a straight line in Fig. 2.
The intersection of AEp and Ea gives a critical
length L = k¢ - t, where the magnetization or-
ientation switches, i.e. reorientation appears. As
the dipolar energy is size dependent the reorientation
of the magnetization can take place far beyond the
L range deduced from the ellipsoid approximation
(see Fig. 2). This fact has been confirmed by means of
Monte-Carlo simulations [12]. Thus, in contradiction
to the analytical ellipsoid assumption the spin
reorientation transition in finite ultra-thin platelets
is size- and lattice dependent.

6. Conclusions

In conclusion, we demonstrate that the dipolar
sum can be separated into two contributions:
thickness- and geometry-dependent parts. The
geometry-dependent demagnetizing factors found
by means of the discrete summation are identical
to those found in continuum ellipsoid approxima-
tion. The demagnetizing energy of the ultra-thin
magnets is size- and lattice dependent. The size-

and lattice dependence of AEp is due to the
superposition of the geometry effect and the
thickness dependence of the demagnetizing energy.
The combination of these two effects leads to a
new phenomenon: size-dependent spin reorienta-
tion transition and/or an enhancement of the
effective perpendicular anisotropy Eet with
shrinking size. Critical size L¢ of the reorientation
can be very large compared to the film thickness.
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We demonstrate that in nanometer-size magnets the superposition of the lattice dependence of the dipolar
energy and the truncation of dipolar sums leads to size- and lattice-dependent effective perpendicular anisot-
ropy. As a consequence, the spin reorientation transition in small platelets of identical shape on different
lattices occurs at different sizes for identical anisotropy energy. In contrast to conventional results influences of

size on the magnetic behavior can be found even at large aspect ratios of size to thickness.

DOI: 10.1103/PhysRevB.67.012409

The patterning of a continuous magnetic film into an array
of small magnetic particles can potentially provide a huge
gain in information storage density.! The increased ratio of
boundary to nonboundary atoms in such nanostructures will
lead to changes of physical properties. Hence, the under-
standing of the influence of the finite size on magnetic be-
havior in small magnets is of high significance for the fun-
damental physics of magnetic materials as well as for
technological applications.

Theoretically, magnetic materials can be successfully
treated as an ensemble of classical magnetic moments S,
which are regularly arranged on a crystalline lattice.” The
configuration of these moments, i.e., the magnetization con-
figuration in the absence of an external magnetic field de-
pends on the balance between the exchange energy, the di-
polar energy, and the magnetocrystalline anisotropy.> The
contribution of the dipolar interaction to the anisotropy en-
ergy is called demagnetizing energy or shape anisotropy. In
thin films the demagnetizing energy is often responsible for
in-plane magnetization. It is usually determined as the differ-
ence between the dipolar energy of the up- and the in-plane
single-domain states £, =& —&_,. The infinite continuous
magnet has E,)*const*ZTrMé , where M is the saturation
magnetization. M is defined as magnetic moment S per
atomic volume V, Ms=S/V. We take V=qa>, with a the
nearest-neighbor distance, for a square lattice that corre-
sponds to the simple cubic stacking and V=a%/\2 for a
triangular lattice that corresponds to the hep(0001) or
fec(111) stacking. The magnetocrystalline anisotropy energy
(€4) may be responsible for a perpendicular magnetization.
&, depends only on the orientation of the moment with re-
spect to the film normal and does not depend on the neigh-
boring moments. For a uniaxial system with a perpendicular
easy axis the angle dependence of the free energy can be
written as £, =K, 3, sin’0, where K| is the first-order anisot-
ropy constant and 6 is the angle to the film normal.? The total
anisotropy energy is defined as E =&, — &, -

The competition between the demagnetizing and the per-
pendicular magnetic anisotropy energy determines the mag-
netization direction. If the relative strength between these
quantities is reversed a change of the magnetization orienta-
tion will occur. One such phenomenon called the spin reori-
entation transition (SRT) has been studied for infinite ultra-

0163-1829/2003/67(1)/012409(4)/$20.00
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thin films> © and observed experimentally. Tn Co/Au(111)
thin films, for example, a transition from vertical (low thick-
ness) to in-plane magnetization (high thickness) was found
around 5 monolayers (MT.).”

Sufficiently large and thin disc-shaped platelets (L>t)
are usually considered to have the demagnetizing energy of
an oblate spheroid (a special case of ellipsoid). The shape
anisotropy of such spheroids is well known.*® For an oblate
spheroid the shape anisotropy depends only on the ratio &
=L/t and can be represented by a universal curve Ep
— f(k) (Fig. 1). For the sake of simplicity the shape anisot-
ropy energy is normalized with respect to 27M f in Fig. 1.
Ep deviates from unity only for structures where L and ¢ are
comparable.

The magnetic anisotropy is a local property and is con-
stant for a given thickness. Thus, it can be represented by a
straight line in Fig. 1. The intersection of Ep and E,4 gives a
critical length L -=k -t where the magnetization orientation
switches, i.e., reorientation appears. Since the shape anisot-
ropy in ellipsoid approximation deviates from unity only at
small k the reorientation can happen only at L~¢ (Fig. 1).
Thus, it is commonly assumed that the orientation of mag-

—

1.0 -
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7
0971 2 P
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log(L) [4]

FIG. 1. Comparison of the analytically calculated magnetostatic
energy density Ep= £p1— £p_, of a continuum oblate spheroid and
the numerically calculated shape anisotropy E, of a disc on a tri-
angular and a square lattice as a function of the diameter of a
spheroid. The demagnetizing energy is normalized with respect to
an'Mi. The straight horizontal line corresponds to the perpendicu-
lar magnetocrystalline anisotropy E, . The vertical lines denote the
critical sizes L¢y, L¢y, and Lo,y Of the reorientation for a tri-
angular and square lattice, and an oblate spheroid.
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netization in structures with L>¢ depends only on the thick-
ness and the temperature of the sample. If £, is larger than
the demagnetizing energy of the infinite film the reorienta-
tion of magnetization will not appear. However, the so-called
effective anisotropy E,;,=E,—Ep will increase with
shrinking size due to the truncation of the lattice sum.

On the other hand the demagnetizing energy of an infinite
monolayer depends on the lattice structure.” The superposi-
tion of the lattice dependence and the shape dependence of
the demagnetizing energy can lead to L different from that
expected from continuum theory.

This study is devoted to analysis of the validity of the
continuum ellipsoid approximation for ultrathin films on a
discrete lattice. It turns out that the superposition of two
effects—the lattice dependence of the demagnetizing energy
and the truncation of dipolar sums—Ileads to a size- and a
lattice-dependent change of the magnetization orientation
and an apparent enhancement of the perpendicular magnetic
anisotropy.

We have investigated discs of finite diameter L on a dis-
crete lattice by means of Monte Carlo simulations. The
Monte-Carlo procedure is the same as in Ref. 6. The Hamil-
tonian of the problem includes exchange, dipolar interac-
tions, and perpendicular anisotropy: H=§,,+&p+ &, . The
ratio of dipolar to exchange constant D/J~10 > used in the
calculations corresponds to real materials. Hence, we do not
use any rescaling of the sample size. For the chosen D we
expect to find a single-domain magnetization configuration
in the samples. In that case the exchange energies of an
in-plane and an out-of-plane configuration are identical for a
collinear solution. First, we prove whether it is also true for
the relaxed solution. Then we compare E,=f(L) and E,
=f(L) for the relaxed and nonrelaxed solutions with the
analytical ellipsoid approach.

For the computations we have taken a monolayer of three-
dimensional classical magnetic moments S of a unit length
on a triangular and a square lattice. We have investigated the
low-temperature magnetic microstructure in samples of sizes
100a=L=1350a where a is the lattice parameter. Thus the
lateral size of the platelets has been chosen to be much larger
than the thickness ¢ (1.>100¢).

For D/J=10"2 and L=<300a the exchange energy in-
crease with increasing temperature 7 is size independent and
proportional to M(T)?, with M(T) the magnetization. For
given L the exchange energy of the relaxed solution
£, (relax) is identical for the up- and the in-plane configu-
rations. This means that the deviation from the collinearity is
merely due to temperature fluctuations and not to changes in
the magnetic microstructure and &,, does not influence the
value of L. For D/J>10"3 or for D/J=10"° and L
>300a the microstructure, of the relaxed configuration (es-
pecially in plane) deviates from that of the thermally agitated
monodomain. Different magnetization patterns can be ob-
tained for different sets of D, K, and J. &, (relax) is very
sensitive to the type of microconfiguration (vortex, flower,
leaf, etc.) and should be taken into account. ! However,
that investigation goes beyond the scope of the present paper.

We have explored a wide range of the total anisotropy
energy. Here we report on the case in which E, is slightly

113

PHYSICAL REVIEW B 67, 012409 (2003)

FIG. 2. The low-temperature magnetic microstructure of two
discs on a triangular lattice with L;=100 and L,=330; E,
=0.9(27mM?3). The exchange, the anisotropy, the dipolar energy
constants, and the temperature are identical for both samples. For
the sake of an appropriate representation a perspective view of an
enlarged part of each sample is shown. For clarity, only one spin
row out of two is drawn as cones. The smaller island has a vertical
single-domain structure. The larger structure presents an in-plane
single-domain magnetization configuration.

smaller than 27M3, ie., E4~0.9-2wM%. In the continuous
ellipsoid approximation the selected sizes and anisotropy al-
low any shape effects to become effective at L-~30r.
Hence, in all calculated structures with L>100¢ an in-plane
magnetization configuration should be expected. We have
not considered different anisotropies for edge atoms since
this goes beyond the scope of our paper.

The results of the simulations for a triangular lattice are
presented as magnetization configurations in Fig. 2. Above
L=300a the magnetization forms a single domain within the
film plane in agreement with the ellipsoid approximation
(Fig. 1). Surprisingly, we find a vertical monodomain below
L=230a. For sizes between L=230a and L=300a
intermediate-spin orientations are found. Thus, in contradic-
tion to the analytical approximation the reorientation of the
magnetization on a triangular lattice takes place far beyond
the k range that is deduced from the ellipsoid approximation.
Thus, the results of the Monte Carlo simulations demonstrate
that the magnetization direction can change by shrinking the
lateral size without changing parameters such as thickness or
temperature.

For the square lattice the results are completely different.
We find for all structures with L>100¢ an in-plane single
domain in accordance with the ellipsoid approximation. By
comparison with the triangular lattice we see that the critical
size of the reorientation L depends on the type of crystalline
lattice.

To find an explanation we have calculated the anisotropy
and the demagnetizing energy for a range of sizes L for col-
linear and relaxed magnetization orientations. In the collin-
ear (nonrelaxed) case the anisotropy cannot be the reason for
size-dependent transition since K| is a constant in the simu-
lations. The functions Ep(collinear)(L) are presented in
Fig. 1. We obtain three different curves Ep(L) for the spher-
oid and the platelets on the triangular or the square lattice.

012409-2
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FIG. 3. The deviation of the demagnetizing energy from the
saturation value S=[Ep(L—®)—Ep(L)|/[Ep(L—%*)]-100% for
a square and a triangular lattice as a function of size. Dashed ver-
tical lines denote the hypothetical sizes at which S is identical in
both lattices. AL denotes the shift of those sizes in different lat-
tices.

For the triangular lattice Epa(L) lies below 277M§. For the
square lattice Epj(L) is larger than 27 M?% already for L
~60a. The critical size of the SRT can be derived from the
data of Fig. 1 for a given value of E, . For the case in which
reorientation should happen, i.e., E,<27M% (horizontal line
in Fig. 1) we might find one critical size L
=Lc(continuum) in all platelets. L of the triangular lat-
tice, however, varies by more than a factor of 10 from that
expected from the ellipsoid approximation and that for the
square lattice (Lp>10-Lg). For a different value of E,
one can get different values of critical size but Lo will
never equal L as expected from the ellipsoid approxima-
tion. The slope of the Ep(L) curves is different for square
and triangular lattices. At large sizes the difference is less
than 1% (see Fig. 3). However, even such small deviations
lead to the remarkable shift of the critical size AL-~100a
for large sizes while AL -~25a for smaller sizes despite the
larger difference in curvature (Fig. 3).

Ep and E, of the noncollinear solution due to thermal
disorder are smaller than those of the collinear case. Figure 4
gives Ep(L) and E (L) of platelets on a triangular lattice for
strictly collinear and noncollinear solutions. The dipolar and
the anisotropy energies exhibit different temperature depen-
dencies which is exactly the reason for the temperature-
induced magnetic reorientation in a ferromagnetic mono-
layer. Interestingly, the anisotropy energy of the relaxed
solution is no longer a constant but is size dependent. As a
consequence L is shifted to smaller sizes comparably to the
collinear case.

Thus the critical size of the reorientation is dependent on
the lattice type and can be very large comparably to the
thickness of the sample. This documents that the size depen-
dence of the reorientation transition in discrete lattices is not
due to the shape effect of the continuous model that depends
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FIG. 4. Comparison of the demagnetizing E, and the anisotropy
E, energy of a disc on a triangular lattice as a function of size for
strictly collinear and relaxed solutions. All energetic parameters J,
D, and K are identical in both cases. The energy is normalized with
respect to 277M§ , kT/J=0.05, and D/J=10 3. The vertical lines
denote the critical sizes Ly and Le, of the magnetization reorien-
tation for collinear and noncollinear configurations.

on the ratio of the object dimensions. The effect found for
the monolayer example is even more pronounced in thicker
samples due to the thickness dependence of the demagnetiz-
ing energy of platelets on a discrete lattice.'>

For Epp(l.—®)<E, <Ep-(L—) the reorientation of
magnetization will appear only in the platelet on a square
lattice. The effective perpendicular anisotropy of a triangular
lattice will increase due to the shape and the lattice depen-
dence of E. This is sometimes erroneously interpreted as
the increase of perpendicular magnetic anisotropy with
shrinking size, since Ep is commonly assumed to be con-
stant. Experimental findings pointing in this direction have
been published rf:(:ently.14

The size and lattice dependencies of the shape anisotropy
arise from the inhomogeneity of the dipolar energy in ultra-
thin ferromagnets.'> The dipole field in such magnets
changes with depth and depends on the film thickness.'” The
dependence of the dipolar energy on the lateral position of an
atom is just a consequence of the long-range character of the
interaction. As the ratio of boundary to nonboundary atoms
increases an influence of the inhomogeneous demagnetizing
field on the shape effect appears.

In conclusion, we demonstrate that in laterally confined
ultrathin magnetic structures the magnetic behavior depends
on the type of the lattice and the sample size. As a conse-
quence, the spin reorientation transition in small platelets of
identical shape on different lattices occurs at different sizes
for identical anisotropy energy. For Ep<Ep(L—) the re-
orientation from an in-plane configuration for larger sizes to
an out-of-plane configuration below a critical size L. occurs.
L can be very large compared to the film thickness. We
have shown that an enhancement of the effective perpendicu-
lar anisotropy E, s can occur with shrinking size.

012409-3
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Abstract

Very recent exact summation has indicated that the lateral confinement of
ultrathin ferromagnetic islands brings about significant deviations from the
usually assumed laterally infinite sample so far as the dipolar magnetic
anisotropy is concerned. Here, it is demonstrated that the phenomenological
rescaling of the structural detail leads to a fundamental micromagnetic
(continuum theory) quantity, namely, the demagnetizing energy for the
assumed shape of the mesoscopic island. The derivation of a compact
analytical formula for the demagnetization factor of any right circular
cylinder has been instrumental for this insight. The effects of discrete
geometry (lattice and substrate orientation), thickness, and overall shape of
the ultrathin structure are thus distilled into a form which exhibits a great

deal of universality.

1. Introduction

The analysis of ferromagnetism in geometrically confined
samples poses a number of fundamental questions, even
if only ideal lattice arrangements and saturated magnetic
configurations are considered. In many continuous theories
of the solid state there is the concept, or anticipation, of some
sort of dimensional crossover in such a way that the continuum
theory goes through as one or more of the dimensions
of the system under consideration become microscopic.
In micromagnetism, though, dimensional crossover has not
been analysed as an option beyond the formal taking of a limit
for the demagnetization factors of ellipsoids; this limit in fact
implies that the continuum approximation remains a valid one
in the process.

Regular arrays of nanosized ferromagnetic particles have
been examined more and more intensively from different
aspects over the last few years (cf [1, 2] and references
therein). Conditions are studied under which the particles are
magnetically coupled either by dipolar interactions or by the

0022-3727/03/232945+05$30.00  © 2003 IOP Publishing Ltd  Printed in the UK

itinerant electrons of the substrate. In fact, for the usually
envisaged applications one needs to ensure that the individual
islands would be well decoupled. Thus, the behaviour of a
single island becomes of paramount importance. Needless
to say, the simplest geometries for the individual islands
are best reproducible and, hence, hold the best promise of
reproducibility of structural and magnetic properties. Along
these lines, one recognizes pretty soon that the magnetic
object to be analysed is laterally mesoscopic, while vertically
microscopic, when thicknesses of only a few monolayers are
involved.

Naturally, two regular shapes come into question when
the ultrathin regime is investigated, those of very flat right
circular cylinders and of very flat right prisms. So far it has
been invariably assumed that the samples can be considered
as laterally infinite with microscopic vertical confinement.
The breakdown of the validity of a naive continuum
approximation has been actually shown by addressing the
dipolar magnetic anisotropy energy (MAE) by taking into
account the discreteness of the lattice [3-6]. This work held up
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some fundamental principles of Maxwell’s theory as applied
to ferromagnetic bodies [7] and adapted them to account for
the non-negligibility of discreteness as a result of the vertical
confinement only. Deviations from the three-dimensional
continuum approach were found and studied for different
numbers of monolayers and for different lattice symmetries.
In view of the size of the islands that are typical in nanoarrays, it
appears, though, that no due account has been attempted for the
finite lateral dimensions. Reference [3]is an exception. There,
the dipolar MAE of a small ball has been studied. The results
seemed to record the absence of any recognizable systematic
behaviour, exhibiting a lot of sensitivity to the local-site detail.

2. Discrete mesoscopic structures

In a very recent study [8], saturated cylindrical islands of
discrete dipoles were analysed. Their dipole MAE density was
found as the energy density difference between the vertical
and the in-plane saturated alignment of magnetic dipoles.
Diameter-to-thickness ratios k = d/t, ranging from 40 to
1000, with the thickness ranging from 1 to 6 monolayers as well
as different crystal arrangements were considered. The limit
of infinite lateral dimensions was studied and the results of
previous studies [4—6] have been retrieved. A non-trivial step
was to take the rather individual curves, corresponding to the
different thicknesses at ‘fixed’ structure, and to normalize them
against the value for the dipolar MAE of the laterally infinite
sample. It was then established that all these individual curves
collapsed to a single, and thus universal, curve whose precise
appearance depended on the ratio « of the cylindrical island
only. This universal curve for the rescaled dipolar MAE was
compared to the one for the dipolar MAE of an ellipsoid
of revolution with the same aspect ratio in the continuum
micromagnetic approximation (see, e.g. [9]).

In this paper, we identify precisely the universal curve,
depending on k = d/t alone, as the dipolar MAE density for a
ferromagnetically saturated right circular cylinder of geometric
ratio x. For the proper understanding of the advance, let us
briefly summarize the salient features of [8] from the presently
proposed perspective.

Let u denote the magnitude of the individual microscopic
magnetic moment and let /¢( denote the magnetic permeability
of the vacuum. One has to define the saturation magnetization
as the density of magnetic moment Ms = p/ Vgip, where Vg
is the volume per site, i.e. per magnetic moment. This is the
definition used, e.g. by Draaisma and de Jonge [4]. The results
of [8] boil down to the demonstration of the validity of the
following relation for the dipolar MAE density:

AEdipolar(disorete) = Edipolar(J—) - Edipolar(”)

= Eqa (discrete) — Egiam (discrete)
- N (g) X)) = Nw)X(@). e))

Here and below, we suppress the dimension-carrying factor
of %/LOMSZ. That is, the dipolar MAE density is given in
natural units to avoid a repetitive occurrence of this factor.
The numerical factor X encapsulates the entire lattice-specific
contribution and additionally depends on the thickness. It
has been tabulated for the most important planes of epitaxial
growth and point-group symmetries [8]. At the same time,
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N has been empirically seen to depend only on « after the
normalization (rescaling) described above: N=N (x). This
universality was seen numerically at some 14 distinct points
for different values of k.

3. Magnetic continuum: the core contribution

One of the main points of this paper is to demonstrate that
the empirical point-wise dependence N («) is in fact derivable
from exact results for the continuum demagnetizing tensor
of a ferromagnetic cylinder with the same aperture as the
mesoscopic platelet. Hence, the factor N (k) encompasses
that part of the dipolar MAE density which is attributed
to the cylindrical shape of the specimen, regardless of the
fact that the platelet is by no means a continuous ferromagnet.
This observation provides, in our opinion, the identification
of universal features as far as they can possibly go in a
system which is so distinctly discrete that it is not even
micromagnetic in the strict ‘continuum’ sense of the word. It
will also transpire from the following that the formulae for the
continuum ferromagnetic cylinder are new in themselves, since
they combine an early insight of Brown [7] with independent
developments [10, 11], made in a non-micromagnetic context.

Brown has shown that, in continuum micromagnetics,
magnetically saturated cylindrical bodies like platelets
belong to the very few non-ellipsoidal cases where the
demagnetization N tensor can be found exactly [7,12]. Just
like an ellipsoid of revolution, the right circular cylinder
possesses axial symmetry about its geometrical symmetry axis.
Consequently, the in-plane eigenvalues of the tensor N are
equal. Thus, Nyia + 2Ngiam = 1. Trivially, Ngigm = (1 —
Naxia)/2 and, hence, for the difference of the two eigenvalues
that will be needed below one gets in analogy with the case of
an ellipsoid of revolution:

Naxiat — Ndiam = % )

In the thin-film context, one would usually denote the
axial and diametral eigenvalues as vertical (L) and in-plane
(|l), respectively, but there is always a certain amount of
ambiguity, related also to the implied directions of the saturated
magnetization. We want to avoid this ambiguity by appealing
directly to the geometrical aspect of the platelets. Thus, we
need to find Ny, and this is affected in two steps.

First, there is the relation [12] between N, and the
self-inductance L of a finite single-layer circular solenoid
(‘current-sheet’ circular coil) Nyja = 1 — Y/(k7?) with «
defined as above and Y = L/(N2d). In the last formula,
N is the total number of turns in the coil; this should not be
mistaken with the demagnetization factor or its eigenvalues as,
in fact, the number of turns does not appear explicitly further
in the paper. The existence of such a relation is suggested,
generally, by the fact that both the demagnetization factor and
the self-inductance coefficient derive from the self-energy of
the two magnetization configurations, while, in particular, the
geometries of the two distinct physical settings are identical
and are finite right circular cylinders. The usefulness of the
relation was seen by Brown in that available tables could be
used for the quantity Y. A relatively large table of values can be
conveniently found in [13], while Brown only provides a few
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values for the case of the flat cylinder (cf [7] and the appendix
in [12]).

Second, the self-inductance L of a single-layer circular
coil has been long known in terms of a closed-form analytical
expression, involving the complete elliptic integrals (see
[13, 14] and the references cited therein). The elliptic-integral
formulation, however, has several shortcomings which, being
of more mathematical nature, will be discussed elsewhere.
That is why we have found it advantageous to evoke an early
result for the required inductance L by Butterworth [10] whose
work has more recently been taken up as a starting point
for astonishingly simple high-accuracy approximations [11]
(see the appendix).

After some straightforward manipulations, one gets the
following result:

4 2F1(5/2,1/2; 2; k2 /(1 + k%))
Naxial =14+_—K- .
3n V1 +k?

There is no need to tabulate this function, because the
hypergeometric Gauss function [15] » F(a, b; c; z) is built-in
into widely spread computer-algebra packages. In the context
of very flat cylinders, as is the case for the ultrathin-film
cylindrical platelets, large values of x > 1 are of interest.
Although the relevant inductance results have been available
for quite some time now, we believe that the formula provided
under equation (3) is the first time that the demagnetization
factors of the saturated zero-susceptibility [12, 16] cylinders
are reported in terms of the hypergeometric function. It notably
covers the whole range of possible values of ¥ (0 < ¥ < 00);
in particular, one does not need to examine separately the thin
(long) as opposed to the flat (short) cylinder.

With the help of the formula found for Ny, (x) above,
one can now proceed to find the dipolar MAE density for the
saturated continuous cylinder in units of % poMZ:

continuum _ grcontinuum continuum
AEdipolar (k) = Eaxial (k) — Ediam ()
3Naxial (K) —1

= Naiat (K) — Neiam (k) = f,

3

“

where the N factors are those for the continuum cylinder. From
equation (3), one easily finds that

) 2 3 1
AES&H;EFUHI(K)ES(K):1+;k_§ﬁ
F 51 ) K2 )
x S —— ).
P22 T T2

The label chosen for the function S(k) is to remind of
the fact that it depends solely on the shape of the cylinder.
We believe that this is the first time that the dipolar MAE
density for the saturated cylinder has been cast in terms of the
very flexible hypergeometric function of Gauss.

If the point xk = o0 is to be examined more
closely, the simple transformation p = 1/« produces
immediately the result for both the dipolar energy and the
axial demagnetization factor. The graphical representation of
equation (5) is given in figure 1 for k > 1.

Let us now summarize what we have got. We have
obtained new closed-form analytic expressions for the demag-
netization factors Nyyja (k) and Ngiam (k) = [1 — Naxjar(€)1/2

— 1.0
e

=
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Figure 1. The MAE density A Egiporqr in units of %0 M2. This is just
the universal function S(k) = [3Nya — 1]/2 with the newly found
Nxiar- In the ultrathin film context, « is a large number (k > 1).

for the right circular cylinder in the usual micromagnetic sense,
i.e. in the continuum limit of micromagnetism. From this, we
have obtained straightforwardly the continuum dipolar MAE
density. All these quantities depend solely on the shape of
the cylinder as specified by the geometric ratio x = d/t.
The expressions are superior to the usually quoted formu-
lae in terms of the complete elliptic integrals. The latter
are not immediately applicable to flat cylinders, and it is
extremely flat cylinders that are of interest in the present con-
text. Additionally, we provide in the appendix a very sim-
ple approximation for the demagnetization factors, based on
inductance work by Lundin [11], which would allow their com-
putation to an extremely high degree of accuracy on a simple
calculator, bypassing altogether the implementation of either
sophisticated software or numerical tables.

Now, the results above are valid for all values of the
geometric ratio (aperture), i.e. for all shapes of the right
cylinder, and not only for platelets. On the other hand, one
has the result of [8], given in equation (1) and pertaining to
the dipolar MAE density of the realistic discrete model of the
platelet. While in both equations (1) and (5) for the discrete and
continuum case, respectively, the MAE densities are measured
in units of (%MQMS), the discrete MAE density is additionally
modified (scaled) by the lattice- and thickness-specific factor
X, discussed at the beginning. The very important finding in
this paper is that

A E gipolar (discrete)

X = A Egipolar(continuum) = S(k)  (6)

with N (k) from the numerical procedure of [8] being equal to
the rigorous S(k) to within a very high accuracy.

In summary and with the original units restored, it has
been established that the following form holds for the discrete
mesoscopic system:

AE i = i HoMg
dipolar (discrete) = [X ({lattice}, £)][S(x)] 2 .

Thus, one can recognize immediately both the factorization of
the dependences and the quantitative aspects involved, since
X and S (k) are now known.

4. Discussion

Altogether, we believe to have shown and discussed in
sufficient detail that the exact finite summation of the dipolar
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sums for an essentially discrete dipole lattice, encountered
in experimental situations in ultrathin ferromagnetic platelets,
leads to a clear delineation of the validity of the micromagnetic
continuum ansatz and the quantitative way in which the
discreteness of the lattice bears on the final result for the
MAE density. It should be obvious that the micromagnetic
approach is alive and well in this limit of mesoscopic lateral
dimensions and microscopic vertical dimensions. In particular,
there is no place for ambiguous interpretation of experimental
or theoretical findings in such ultrathin, laterally finite systems.
Moreover, calculations of the type of those presented for
laterally infinite films [4-6] find additional justification as
they are reproduced by the present approach in the infinite
lateral limit. Alternatively and not less importantly, the same
‘factored’ interpretation might well be used as a quantification
of the extent of validity of the continuous approach. This
should not be surprising as micromagnetism is nothing else but
an advanced application of Maxwell’s theory of continua. No
matter from what side (discrete or continuum) one approaches
the problem, one should be able to recognize the above results
as an extremely useful starting point for further investigation
into the electrodynamics of small systems.

As animportant step-stone, we have derived a rather useful
and compact formula for the demagnetization factors and
the dipolar MAE density for a saturated (zero-susceptibility)
continuum ferromagnet, possessing the shape of aright circular
cylinder of any geometric ratio k = d/t. Amazingly simple
analytical approximations to the hypergeometric result are also
provided in the appendix.

We would like to point out that non-saturated cylindrical
ferromagnets have also been intensively considered. These are
outside the scope of this study. A most recent and authoritative
entrance to this subject is provided by [16] (see also [13] for
an earlier discussion).
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Appendix

To make this paper self-contained, we proceed to reproduce
some important results, most of which are not well known or
easily accessible.

In the first place, let us give some more detail from the
work of Lundin [11]. An important older reference for work
on self-inductance of finite coils is the book of Grover [14]
(see also the papers cited in [13]). Below, we shall stick to
the notations of Lundin, although in the bulk of the paper we
have made the necessary adjustments of notation. Thus, only
in the following, a stands for the radius of the finite circular
coil whose self-inductance is evaluated, b stands for the axial
length of the coil, N is the number of turns. The inductance
L is then suitably represented in two equivalent scaled forms

2948

with the help of either of the functions f(x) or g(1/x):

2.2
L= pom N7a” f (2751) = uoN%ag (%) .

b b a
The scaling function f(x) is given by f(x) = fi(x?) —
4x/Gr), while fi(y) is i) = 2F1G3, 523 y/(1+y)/
J1+y.

The function g(x) has a somewhat more complicated
appearance and, in fact, contains an infinite series; moreover,
the latter series involves a two-position recursion relation for
the evaluation of the successive terms.

Two approximate formulae, given by Lundin, may turn
out to be useful, especially since they allow the calculations
to be carried out with the help of a pocket calculator, if the
conditions of their validity are met. Thus, a maximum relative
error less than 0.3 x 107> is claimed to be guaranteed by
the following approximate formulae, covering two different
ranges. For 2a < b, one has

o N2a? 4a? 4 2a
L="""" R ()=,
b b? 37 b
while for 2a > b, one gets

L—Nzlg—alFﬁ+Fb—2 (A3)
THoa M\ T3 ) a2 ) T a2 )]

where for 0 < x < 1 the approximating functions F; and F,
are given by

(A1)

(A2)

Py = 10383901 +0.017 108x2
1= 1+0.258952x ’

(A4)

Fy(x) = 0.093 842x + 0.002029x% — 0.000801x>.  (A5)

To obtain the results for the axial demagnetizing factor of
the ferromagnetically saturated cylinder as displayed in the
bulk of the paper, one needs to follow the prescription of
Brown.

For the sake of completeness, here follow the results of
Stoner [17] and Osborn [18] for the oblate ellipsoid; N, is the
demagnetizing factor along the shortest axis of the ellipsoid;
the aspect ratio K = a/c with a = b > ¢ being the three
semi-major axes:

N?blale K) =
. (K= =

2 (K2
K |:1_arcs1n( K —1/K)j|. (A6)

1

Here, for the very flat oblate ellipsoid as in the platelets
considered, there is the simple approximate formula N, =
1 —7/QK)+2/K*(K > 1).

A comparison between the factors for the oblate ellipsoid
and the cylinder can be seen in figure 2. For very flat platelets
the difference is significant, which is why one should use the
now available analytical formulae for the cylinder. Note that
this does not imply that the concept of the equivalent ellipsoid
is wrong [7, 19]; rather, it implies that for the right circular
cylindrical shape it is no longer needed as the exact result has
been found in a closed analytical form. Very recently, the
equivalent ellipsoid for a disc has actually been exhaustively
determined by making use of the new hypergeometric result
for the disc’s demagnetization factor [20].
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Dipolar MAE of ultrathin ferromagnets
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Z. 0.5 N axial
| 1 |
20 60 100
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Figure 2. The upper curve is the universal curve for N2 (K)
where K is the aspect ratio: K = a/c (a = b > c are the
semi-major axes of the ellipsoid). For comparison, we present also
Naiar (k) for the cylinder, where « is the diameter-to-thickness
ratio.

Finally, we have compared the results we get by the
hypergeometric formula with those published in the appendix 3
of [11] and those in table  of [12]. In the first case, the accuracy
of Brown’s table is better for the long cylinder as compared to
the short cylinder (in this latter case, for the four values of k that
are only available there, the accuracy is better than 3.5 x 1079).
In the second case, all of the digits given in table I there are
exact and significant.
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Abstract

We derive the optimal magnetic structures for monolayers of either square or triangular lattice symmetry with evidence for
morphological differences. The interplay between short-range exchange and long-range dipolar forces leads to quite different results
for Ising spins and vector spins. For the Ising model, spin domains with parallel stripes, chevron patterns and labyrinths at different
scales and with thermal disorder are deduced. For the vector model with a weak perpendicular anisotropy, the spins are planar and
form a lattice of vortices of both signs. Such a structure remains stable even under a large perpendicular magnetic field, whereas a
weak in-plane magnetic field is sufficient to obtain a uniform magnetic domain. For a sufficiently large perpendicular anisotropy, a
mixed structure appears that includes spin vortex areas surrounding spin-up and spin-down areas. © 1998 Elsevier Science B.V. All
rights reserved.

Keywords: Ising spins; Magnetic monolayers; Monte-Carlo simulations; Vector spins

1. Introduction

It has been known for a long time both experi-
mentally and theoretically that magnetism in thin
films with a strong perpendicular magnetic anisot-
ropy is associated with a very rich variety of
magnetic domain structures with stripes, chevrons,
labyrinths and even bubbles [1-4]. The recent
experimental preparation of epitaxial magnetic
monolayers [5] as well as the development of
magnetic-non-magnetic multilayers for the pur-

* Corresponding author. Fax: (+33) 143 54 28 78;
e-mail: ghazali@gps.jussieu.fr

0039-6028/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
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pose of giant magnetoresistance applications [6]
brought a renewed interest in the magnetism of
thin films, with evidence for new structures
observed with spin-polarized low-energy electron
microscopy [7]. This interest is still increasing since
accurate methods of Foucault imaging of these
domains [8-10] and magnetic force microscopy
experiments [11] have now become available and
bring more and more results on spin orientations
at an almost atomic scale. Recent results suggest
that spin reorientations, in the plane or perpendic-
ular to it, occur within a quite small range of
temperatures or of layer thicknesses [5].

Using rather large samples for Monte-Carlo



122

7. Papers on Domain Walls

392 E.Y. Vedmedenko et al. | Surface Science 402—-404 (1998) 391-395

simulations, the present study is devoted to a
comparison of magnetic structures of monolayers
of Ising spins and vector spins, as well as to the
comparison of spin morphologies due to the sym-
metry of the supporting lattice, together with the
influence of external fields. Previous theoretical
studies dealt with magnetic structures without any
external field [12-16] using smaller samples. The
Monte-Carlo (MC) method with the Metropolis
algorithm is a good tool for dealing with ground-
state and finite temperature spin structures of
realistic models, especially in the case of frustration
that occurs here at different levels because of long-
range competing dipolar interactions.

Thus, the present work involves deriving stable
structures at different temperatures by means of
MC relaxations starting from a high-temperature
random spin configuration. At a given temper-
ature, several hundred MC steps per spin are
achieved. The convergence of the relaxation pro-
cess towards equilibrium is observed and followed
by computing the total energy at each MC step.
Several successive temperature steps are introduced
in order to lower the temperature rather continu-
ously. At the end of the cooling down process, the
total energy is just fluctuating around its mean
equilibrium value. Our samples are square and
triangular lattices with a size ranging from 10 000
to 40000 spins with free boundary conditions.
Since the final spin configurations may depend on
the sample shape, disks, squares and rectangles

have been used. The Hamiltonian includes local
ferromagnetic exchange, long range dipolar inter-
actions, uniaxial anisotropy and external field.

2. Ising spins

With a monolayer lattice in the xy-plane of Ising
spins S;=+1 in the z-direction, the total
Hamiltonian reads

H=-Y JS.S;+D) (S;.S;/ri)—> H..S; (1)
<ij> ij i
where J is the nearest neighbour ferromagnetic
exchange parameter. D is the dipolar coupling
parameter. The first sum is restricted to the nearest
neighbours, whereas the second is running over all
couples of spins i and j with distance r;;. The
external field H, is perpendicular to the plane. This
is useful to introduce the dimensionless parameter
K=D/(Ja®) where a is the lattice parameter. Thus,
it is possible to consider the cases with different
ratios D/J as issued from the single case with a
given K value but with different scaling parameters
a. With these remarks in hand, the increase of the
dipolar coupling D with a constant exchange must
be considered as an increase in the effective lattice
parameter a. Thus, large values of D must be
considered as being realized for large samples, and
structural results become universal, but with size-
dependent effects. Fig. 1 shows the low-temper-
ature MC relaxed structures of portions of

AN \\\“Ef
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Fig. 1. Portions of 100 x 100 Ising spins at low temperature on square (right) and triangular (left) lattices. Black stripes, up spins;
white stripes, down spins. D/J=0.75 (right), D/J=1 (left); kT/J=0.1.
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100 x 100 spin samples, for square and triangular
lattices, without an external field. A comparison
between the two spin configurations gives evidence
of an effective in-plane anisotropy linked with the
underlying discrete lattice. At a local size, with a
and thus D being small, an organization with
parallel stripes of alternate spins occurs, whereas
at larger sizes, with ¢ and thus D being larger,
stripes become organized with chevrons and later
labyrinthine patterns, as already observed in mate-
rials with uniaxial anisotropy [1-4,17]. The univer-
sal character of these patterns at different scales is
confirmed by these general observations. Fig. 2
gives the temperature effect at a very large scale
(200 x200), in the case of a pure dipolar inter-
action: J=0. Note the complex labyrinthine struc-
ture at low temperature with zigzags, ramifications,
loops and endpoints. As the temperature increases,
the walls roughen and shorten. Fig. 3 summarizes
the results obtained for structures with an external
field, with evidence of hysteresis and the appear-
ance of bubble domains. The progressive change
from stripes to bubbles is initiated by stripe indent-
ations that transform into closed bubbles when
there are sufficient numbers of them. This process
of nucleation of independent indentations has not
been observed experimentally and requires a large
amount of local energy, whereas the process of
bubble shrinkage and wall motion needs less
energy as we have seen in the total energy analysis.
This might explain why indentations have a short
lifetime and are difficult to observe, whereas wall
motions have a long lifetime and are easily
observed.

Sezm
S i
-
XAt

pa N
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3. Vector spins

With a monolayer lattice in the xy-plane of
vector spins S;, the total Hamiltonian reads

(Si.sj _3 (8;.r35) (S 'rii)>

3 rS

H=-Y JS,.S;+DY

<ijy ij Fij ij

—A4Y S2-Y H.S, )

where J is the exchange parameter, which is non-
zero only for the nearest neighbour pairs. D is the
dipolar coupling parameter, and the relevant sum
is running over all spin pairs i and j defining the
vector r;;. The parameter 4 measures the uniaxial
anisotropy along the z-axis, and the external field
H can be in any direction. The previous reasoning
about the universality of this system remains valid
here with the new dimensionless parameter A/J
for the reduced anisotropy. Thus a long-range
dipolar effect occurs when looking at a large scale,
i.e. for a large value of the lattice parameter a.
First, without an external field and without anisot-
ropy, the results for the low-temperature structures
obtained for different values of the dipolar parame-
ter D, i.e. at different scales, show that all spins lie
in the plane. This is in agreement with a known
result from magnetostatics on the demagnetizing
field in thin plates. These structures exhibit many
vortices of both signs as seen in Figs.4 and 4
where regions of strong vorticity are also high-
lighted and indicate both the vortex cores and the
walls between uniform domains. These walls con-
nect vortices of the same sign, just like von Kdrmén

Fig. 2. Pure dipolar coupling: portion of 200 x 200 Ising spins on a triangular lattice with labyrinthine patterns of up (black) and
down (white) spin domains. From left to right: k7/D=0.05, 0.2 and 0.4.
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Fig. 3. Magnetic field effects: portion of 100 x 100 Ising spins on a triangular lattice. D/J=1, kT/J=0.05. Clockwise: H/J=0, 1, 2.5

(after saturation) and 1.
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Fig. 4. Vector spins: portion of 10192 spins on a triangular
lattice. D/J=0.1, A=0, kT/J=0.01. Sample =disk. Arrows are
spins. Thick black (grey) arrows highlight the (counter) clock-
wise vortex cores with the relevant walls between spin domains.

vortex streets in turbulent flows (see, for example,
Ref.[18]). The final structure with vortices,
domains and walls can be compared to the classical
cross-tie walls generally reported in thin films [19].
The application of a weak in-plane external field
is enough to erase all vortices in the sample leading
to a uniform domain up to boundary effects,
whereas a very high perpendicular field, about 30
times higher than the in-plane one, is required to
make the sample magnetically uniform. Finally,
for a sufficiently large perpendicular anisotropy, a
mixed structure appears that includes almost
planar spin vortex areas surrounding nearly per-
pendicular spin-up and spin-down areas with a
marked chirality. This is illustrated in Fig. 5. Let
us stress that the spin orientation transition
between quasi-planar spins and Ising-like spins
occurs in a narrow region of anisotropy values at
a sufficiently low temperature when thermal excit-
ations are weak.
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Fig. 5. Vector spins: spin orientation effects. Portion of a disk
of 10192 spins on a triangular lattice. D/J=0.1, A/J=0.9,
kT/J=0.01. Thin arrows are quasi-planar spins. Thick black
(grey) arrows highlight the spins standing out above (below)
the plane. Bottom: spin profile in the vertical xz-plane along
the path drawn in the figure.
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In magnetic ultrathin films and dots, competing exchange, anisotropy
and dipolar couplings lead to a large variety of magnetic structures. These
structures are obtained by means of Monte Carlo simulations. Three classes
of magnetic structures are obtained according to anistropy-to-dipolar energy
ratio: Ising striped structures, XY-spin structures with vortices and twisted
spin phases at the spin reorientation transition. Domain wall nucleation and
motion at the coercive field are also accessible.

PACS numbers: 75.70.Ak, 75.50.Tt, 75.60.Ch, 75.40.Mg

Ultrathin films of a single atomic monolayer or of a few monolayers de-
posited over non magnetic materials are now available for magnetic experiments
[1]. Similarly nanostructures such as ultrafine magnetic particles have been ob-
tained by different methods such as electrochemistry, or soft chemistry route such
as the polyol process [2], or by nanolithography [3], or by aggregated atomic
beams. These new materials are interesting both by their original properties and
by the high density of independent objects they generate.

1. Magnetic interactions, model and simulation

The magnetic structures of these nanomaterials result from the competition
between exchange interaction J with nearest spins, magnetocrystalline anisotropy,
long-range dipolar coupling D between spins and Zeeman interaction with the
external magnetic field H. Here we assume a uniaxial first-order anisotropy K.
The Hamiltonian with vector spins S; reads:

H=-JY $;8;-K) S§Z+D§:< o i_g A s -
ij tJ i

— - ry.
<ij> i

]

These magnetic structures are expected to be complex due to the long-range
dipolar interactions which yield antagonistic forces on the spins at all length scales.

(1)



In addition, the resulting magnetic patterns depend on the shape of the sample.
Therefore, to account for such structures, all dipolar couplings between spins in
the sample should be included.

The aim of this paper 18 to classify these magnetic structures in a wide
range of parameter values by analyzing the various magnetic orders obtained
from Monte Carlo (MC) simulations after annealing and slow cooling. Simple
scaling arguments based on the values of the dimensionless ratio R = D/Ja®
with the lattice parameter a, together with a consistent rescaling of the other
Hamiltonian coupling parameters, allow to consider spin blocks of various sizes
instead of single spins [4]. This is a very useful procedure since it permits to
account for large sample patterns with a relatively limited number of effective
Spins.

Extensive Monte-Carlo simulations have been performed. Starting at a high
enough temperature, different temperatures are explored in a slow cooling process
in order to deduce the low temperature configurations. This is a very long process
because of the intrinsic all range frustration due to dipolar couplings.

A useful criterion for selecting low temperature configurations is the en-
ergy comparison between relaxed MC configurations and hypothetic configura-
tions suggested from symmetry or from simple considerations [4]. Such a control
strongly helps in rationalizing the choice of optimal configurations, given the high
degree of approximate degeneracy which makes the exact ground state very dif-
ficult to single out. Since the spin patterns are size- and shape-dependent, free
boundary conditions are used. This also precludes any periodicity artificially
induced by periodic boundary conditions [4].

Demagnetizing fields are due to dipolar interactions and are well known
to be shape-dependent. Thus different sample shapes have been considered in
order to settle this classification on a clear basis. For ultrathin films, square,
rectangle or disk-shaped samples have been considered with two lattice types:
the triangular lattice represents a (111)-oriented fcc lattice surface or a surface
normal to the hep-lattice c-axis and the square lattice represents a (001)-oriented
fce-lattice surface. For dots, hep-lattice spheres of different sizes have been used.
In our MC simulations, most samples contain about 10000 vector spins. The
maximum size studied is about 50000 vector spins.

For all samples, three general classes of magnetic structures must be dis-
tinguished: i) With a very strong anisotropy, perpendicular to the film or along
the dot c-axis, an Ising-like spin structure is formed in which the magnetization is
parallel to this direction; ii) with a weak anisotropy energy as compared to dipo-
lar energy, a planar (XY) vector spin structure appears at low temperaure in the
film plane or in the plane normal to the c-axis of the dot; iii) in the intermediate
case where the perpendicular anisotropy energy balances the dipolar energy, spins
are evenly oriented in all directions. At this point, a spin reorientation transition
occurs. In the following, we describe these different spin patterns in some detail.

2. Ultrathin films

For very thin films without external field, the low temperature structures
are: 1) With a strong perpendicular anisotropy (Ising-type spins), magnetic do-
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Fig. 1. Low-temperature in-plane spin pattern with vortices for a disk-shaped sample of
10 192 spins on a triangular lattice. D/Ja® =1

2 %
LT

i

a1

Fig. 2. Spin reorientation effects. Portion of a disk of 10 192 spins on a triangular lattice.
Thin arrows are nearly in-plane spins. Thick arrows are out-of-plane spins, either above
(black) or below (grey). Bottom: spin profile in the vertical plane along the indicated
segment. D/Ja®> =0.1 and K/J = 0.9.

mains with up-spin and down-spin alternate stripes of equal width are arranged
in chevry patterns. On a large scale, these domains define mazes [6]. Similar
structures are already well known to occur for thicker samples [5]. i) With a
weak anisotropy, the low temperature configurations consist in planar (XY-type)
spins with clockwise and anti-clockwise vortices [4]. These vortices are rather
uniformly distributed over the sample as seen in Fig. 1. This new feature is not
yet fully observed in ultrathin films, presumably because of the intrinsic difficulty
to observe in-plane vector spin patterns at the nanometre scale. However, similar
features were experimentally observed in magnetic-non magnetic multilayers by
Lorentz microscopy [7]. ii1) With an intermediate uniaxial anisotropy, i.e., around
the reorientation transition, a modulated twisted spin configuration takes place
and includes almost in-plane spin domains surrounding patches of out-of-plane
spins. The latters are arranged as twisted spin bunches as seen in Fig. 2. Ex-
perimentally, the spin reorientation transition is now well known to occur as a
function of various parameters, such as layer thickness; temperature, etc. [1], but
the spin reorientation just starts to be observed at the nanometer scale [8] with
results similar to those predicted here [6].

The magnetic structures described above are very sensitive to the action of



an external field. 1) In the Ising case, stripes with spins parallel to the field start
to widen out, with local indentations, at the expense of antiparallel spin stripes.
As the external field is increased further, magnetic bubble domains appear until
the magnetic saturation is reached. The bubbles remain in a metastable state
after the field has been removed, just as in the case of thicker samples [5]. ii)
With vector spins, when an in-plane external field is increased up to the coercive
value, 360° walls nucleate at the sample edge and move through the sample as
solitons which can be followed step by step during the MC calculations. This
nucleation-propagation process is a quite general problem [9]. The study of the
dynamics of this complex motion is in progress.

3. Magnetic dots

Let us now turn to the magnetic dots. Without external field, the low
temperature structures are: i) For a large uniaxial anisotropy (Ising spins), the
partition between up-spin and down-spin domains has a rather complex geometry.
ii) For a small anisotropy, XY-spin structures develop in the densest planes with
vortices. The core-vortex line is a skew line crossing the sample. iii) With a
moderate anisotropy, complex three-dimensional magnetic structures appear that
contains zones with spins parallel to the densest planes and other zones with spins
normal to these planes. In between, the spins rotate on short distances.

The magnetic structure of dots in presence of a field is being processed now
with preliminary results which are comparable to those obtained for ultrathin
films, i.e., three-dimensional wall nucleation and wall motion with distorsion.

As a conclusion we emphasize the interest of the new magnetic structures
described here. For instance, in ultrathin layers, magnetic vortices and twisted
spin configurations are expected to occur, and preliminary observations of similar
structures exist [8]. On the other hand, both stripe structures and vortex struc-
tures have been observed in magnetic dot arrays [3]. Another point of interest is
the fast soliton dynamics which is shown to occur at the coercive field. This is
crucial for recording applications and critical properties of this motion are now
extensively studied experimentally and theoretically.
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Scanning tunneling microscopy reveals that domain walls in ultrathin Fe nanowires are oriented
along a certain crystallographic direction, regardless of the orientation of the wires. Monte Carlo
simulations on a discrete lattice are in accordance with the experiment if the film relaxation is taken
into account. We demonstrate that the wall orientation is determined by the atomic lattice and the
resulting strength of an effective exchange interaction. The magnetic anisotropy and the magnetostatic
energy play a minor role for the wall orientation in that system.

DOI: 10.1103/PhysRevLett.92.077207

Magnetism of systems with reduced dimensions poses
a number of topical questions, one intriguing issue being
the orientation of domain walls. It has been shown ex-
perimentally that the mesoscopic pathway of domain
walls in ultrathin films can either be arbitrary, as in
Co/Au(111) [1], or follow certain crystallographic direc-
tions, as in Fe/W(110) [2]. Although the knowledge of
domain patterns and, in particular, the domain wall ori-
entation on the nanoscale is of great importance for the
fundamental physics of magnetism, as well as for tech-
nical applications, the orientation of domain walls on a
local, microscopic scale has not yet been studied.

One experimentally accessible and, for future applica-
tions, very perspective geometrical shape is a so-called
nanowire —a quasi-one-dimensional structure of infinite
length and lateral dimensions on the nanometer scale. The
nanowire geometry is particularly advantageous for the
investigation of the domain wall orientation as the latter
can be governed by a minimization of the total wall
length. On the other hand, it has been demonstrated that
in ultrathin nanostructures the discreteness of the crys-
talline lattice can also change the magnetization configu-
ration [3]. The role of the lattice for the domain wall
orientation has not been analyzed systematically.

For many experimental systems, e.g., Fe/Cu(100), the
shortest wall path coincides with one of the crystallo-
graphic axes which makes it impossible to distinguish
between the role of the lattice for the domain formation
and other effects. Only if the shortest distance is different
from any principal axes of a lattice the mechanism under-
lying the orientation of the domain walls can be revealed.
A suitable and experimentally well-studied model system
is the double layer (DL) Fe nanowires on stepped W(110)
[2,4-8] being characterized by perpendicularly magne-
tized domains separated by domain walls. Experimental
and ab initio electronic structure calculations [9] led to a
comprehensive understanding of the electronic and the
magnetic properties. The relationship between the orien-
tation of domain walls and of the DL Fe stripes, however,
has not yet been investigated.

077207-1 0031-9007/04 /92(7)/077207(4)$22.50
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This study is devoted to the analysis of the influence of
the discrete nature of an atomic lattice on the orientation
of domain walls in nanostructures. Scanning tunneling
microscopy on areas with different local miscut orienta-
tions reveals that the domain walls are oriented along the
[110] and less often along the [331] direction, regardless
of the orientation of the nanowires. Employing Monte
Carlo simulations (MCS) we demonstrate that the wall
orientation is determined by the underlying crystalline
lattice and the exchange interactions. The magnetic an-
isotropy and the magnetostatic energy, which can align
walls along certain crystallographic directions in bulk
material, play a minor role for the wall orientation. We
regard these results to be valid for a large class of low
symmetry ultrathin ferromagnetic films.

The experiments have been performed in a commercial
variable temperature STM attached to a five-chamber
UHYV system. The instrument is equipped with an x-y
sample positioning facility which allows one to access
different areas on the same sample. We used etched tung-
sten tips for the measurements. Fe was deposited onto the
W(110) substrate by molecular beam epitaxy at a pressure
p =1Xx107'" mbar. To achieve step flow growth the
crystal was held at 7 = 500 K during thin film deposi-
tion. Simultaneously to constant current images, maps of
the differential conductance dI/dU were recorded by
means of the lock-in technique.

Figure 1 shows the topography (a) and maps of dif-
ferential conductance (b)—(d) of 1.7 ML (monolayer)
Fe/W(110). While the dI/dU map of Fig. 1(b) has been
measured simultaneously with and at the same position as
the topographic image, the dI/dU maps of Figs. 1(c) and
1(d) show other areas of the same sample which exhibit
different local miscut orientations. In any case the Fe DL
nanowires can be distinguished from sample locations
which are covered by a single Fe layer (SL) due to their
different electronic properties resulting in a dI/dU signal
that is lower for the SL than for the DL. The DL nano-
wires shown in Figs. 1(a) and 1(b) extend approximately
along [001], the ones in Fig. 1(c) along [110], while in

© 2004 The American Physical Society 077207-1
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FIG. 1 (color online).

(a) Topography and (b)—(d) dI/dU
maps of 1.7 ML Fe/W(110) at different local miscut orienta-
tion. (a) and (b) were recorded simultaneously. The lateral scale
is the same in all images. In all cases, domain walls (white
lines) are oriented along [110], regardless of the orientation of
the nanowires. Parameters are U =5 mV, I =0.5nA, T =
75 K (b),(c), and 120 K (d).

Fig. 1(d) the wire direction is intermediate, roughly along
[111]. Because of unequal diffusion energies the Fe
stripes grow smoothest along [001] and least smooth
along [110] [10]. After initial pseudomorphic growth
the high tensile strain starts to relax by insertion of
dislocation lines in the Fe DL which run along the [001]
direction. These are imaged as narrow black lines in the
dl/dU maps. The double layer nanowire has a periodic
magnetic structure with out-of-plane domains alternat-
ingly magnetized up and down. These domains are sepa-
rated by 180° in-plane domain walls. The typical distance
between adjacent walls is 23 * 2 nm [8]. Because of spin-
orbit coupling we can differentiate between areas with
out-of-plane and in-plane magnetization even with non-
magnetic tips [4]. Since the bias voltage chosen for the
measurements of Fig. 1 (U =5 mV) is below the cross-
over of domain and domain wall spectra [see Fig. 1(e) in
Ref. [4]] the domain walls are imaged as white lines in
this experiment. Regardless of the direction of the nano-
wires the domain walls run mainly along the [110] di-
rection, i.e., perpendicular to the dislocation lines. As a
consequence, the domain walls within the nanowires are
infinitely long in the case of Fig. 1(c)(disregarding inter-
ruptions due to structural imperfections), and very short
in case of Fig. 1(b) where they run perpendicular to the
axis of the nanowire. Less often the domain walls run
along [331]. This effect can be seen in Fig. 2(a) where a
DL, 20 nm wide nanowire is shown. As the bias voltage
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FIG. 2 (color online). Top view of experimental (a) and simu-
lated nanowire sections of 20 nm (b)—(d) and 40 nm widths (e):
(a) experiment, domain walls are imaged as dark lines;
(b) continuum theory, isotropic exchange. MCS: (c) J3:J,:J, =
0:1:1 (identical exchange interaction along all nearest neighbor
bonds); (d),(e) J3:J5:J; = 4:2:1.

and the material of the STM tip were different from those
of experiment Fig. 1 the domain walls are imaged as dark
lines [2]. Both [110] and [331] directions are not principal
directions of an ideal bcc lattice as they do not coincide
with the primitive vectors of the bce structure.

We have performed calculations following a widely
used micromagnetic framework [11], where the nanowires
consist of rectangular blocks of continuous material. For
isotropic exchange stiffness A we obtain the wall direc-
tion that is determined by a minimization of the wall
length, ie., perpendicular to the nanowire direction
[Fig. 2(b)]. This result is not consistent with the experi-
mental observation of Fig. 1. It even cannot be corrected
by an additional in-plane anisotropy [Fig. 2(b)]; this leads
only to an alignment of the magnetization within the wall
with no consequences for the wall direction. Varying A in
the [110] and in the [001] direction [12], we obtain a
tilting of the domain wall [13]. Hence, in contrast to bulk
materials where magnetic anisotropy may affect the wall
direction, the exchange stiffness plays a more important
role in the ultrathin limit. The anisotropy of the contin-
uum parameter A can be governed either by noncubic
symmetry of the lattice or by the varying exchange in-
tegral between nearest-neighboring atoms [12]. By fitting
A to the experimental results we cannot distinguish be-
tween the two effects. Besides, we cannot explain the
experimental observation of coexisting [110] and [331]
walls. Thus, without consideration of the discrete atomic
lattice the physics of the wall orientation in the ultrathin
limit cannot be understood.
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In order to explain the experimental results we performed MCS on a discrete lattice. In contrast to the case of
localized spin systems, in itinerant-electron systems the exchange coupling between local moments does not explicitly
enter into a Heisenberg-type Hamiltonian. However, within the framework of spin-density-functional theory expres-
sions for the effective exchange pair interactions can be obtained [14,15]. With these effective constants the system

Hamiltonian for the MC calculations reads

S.-S. S -r)S:-r:
H=_ZJkSi'Sj+DZ< - f—3( : r”)§ i)
;

(i) T\ T ij
where J;, denotes the effective nearest neighbor exchange
coupling constant along different bonds (Fig. 3), D is the
dipolar coupling parameter, # and ¢ are the spherical
angles, and r;; is the vector between sites i and j. The
coefficients k; and k, are the first- and second-order
anisotropies per atom, respectively. k, is an in-plane
anisotropy per atom. The in-plane anisotropy can have
any angle B with respect to the x axis. For the MC
computations we consider two layers of classical, three-
dimensional magnetic moments S on a bce(110) lattice of
about 20000 effective magnetic sites. The Monte Carlo
procedure is described elsewhere [16]. We use a realistic
ratio of exchange and dipolar constants D/J = 1073, The
anisotropy constants have been widely varied in the re-
gime of the vertical magnetization. The best agreement
with the experimental results (domain width of 20—25 nm
and wall width of 6—9 nm) gives constants corresponding
to an anisotropy energy density K; = (1.6-2.0)K,;, K, =
(0-0.7)K,, K, = (0-0.6)K, with K, = 2M? the shape
anisotropy. The value of the out-of-plane anisotropy is
K, = (2-2.1)K;. We have performed calculations for
films, single wires, and arrays of three wires with peri-
odic boundary conditions along the wires and open
boundary conditions in the perpendicular direction.

In a first step we assume an idealized film with an
“isotropic’’ nearest neighbor exchange, i.e., J; = J, and
J3 =0 in the case of a bcc(110) lattice (cf. Fig. 3). In
infinite sc(100) or an fcc(111) 1-2 ML films no preferred
wall orientation is observed. In contrast, domain walls in
a 2 ML bec(110) film have mainly [110] orientation. This
can be explained by the minimization of the density of

[001]
[111]
[110]

e O 0
(‘.
()

FIG. 3 (color online).  Unit cell of 2 ML Fe/W(110) in (a) top
and (b) perspective views. Black and light grey (blue) lines
denote the nearest neighboring bonds J; and J, in an undis-
torted, ideal crystal. Dark grey (red) lines denote additional
nearest neighboring bonds J; due to relaxation.
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nearest neighbor bonds per unit volume of a wall for this
direction. As a consequence, the exchange energy cost
due to the wall formation can be minimized. The same
results have been obtained for wide wires (>40 nm).
Those results are consistent with experiments and
demonstrate that the crystal lattice can affect the wall
orientation.

A typical result for the case of [111] oriented, 20 nm
wide nanowires is given in Fig. 2(c). In that case the walls
deviate from the [110] direction. The orientation of walls
is close to [111]. Hence, the lattice symmetry alone is
insufficient to orient the domain walls along [110]. The
calculations show that if the length of the walls can be
minimized as, for example, in thin wires of Fig. 2(c) the
wall orientation can deviate from [110]. In the following
we explain the discrepancy by taking into account the
lattice relaxation.

Because of pseudomorphic growth the first two Fe
layers adopt the lateral lattice constant of tungsten, which
is about 10% larger than that of bulk iron. As a conse-
quence, the Fe-Fe interlayer distance relaxes below the Fe
bulk value [9]. This leads to a change of the interatomic
distances. Namely, the neighbor distance in the [001]
direction (black in Fig. 3) d; decreases, the spacings in
the [111] and the [111] direction d, (light grey) are
increased, and the distance in the [110] d; direction
(dark grey) decreases to a value close to the nearest
neighbor distance in bulk iron. Hence, instead of six
nearest neighbors as in an ideal, 2 ML thick bcc(110)
film, in Fe/W(110) all atoms have eighth bonds of similar
length. The respective distances in units of the nearest
neighbor distance in bulk Fe are d; = 0.82, d, = 0.96,
and d; = 0.99 [9].

The calculations [14,17-19] show that the strength of
the exchange coupling is a function of relative position r;;
of the magnetic moments i and j. Especially interesting is
the behavior of J(r;;) in Fe. For Fe a reduction in nearest
neighbor (NN) spacing dyy With respect to the bulk value
drives the exchange towards antiferromagnetism. This
effect has been made responsible for the fact that fcc-Fe
is antiferromagnetic while bcc-Fe is a ferromagnetic
material [20,21]. That argument is also supported by the
position of Fe on the Bethe-Slater curve, which is widely
used in the physics of ferromagnetic alloys [21,22]. Thus,
a decrease of the interatomic distance in the [001] direc-
tion can lead —in contrast to other ferromagnets —to a
reduction of the ferromagnetic exchange parameter.

077207-3
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For Fe nanowires on W(110) the situation is even more
subtle due to hybridization and polarization effects at the
Fe/W interface. All the more interesting is the advance,
described in very recent studies [23,24], where the ex-
change stiffness of Fe films adsorbed on a W(110) surface
has been calculated. The authors find that the exchange
stiffness A, which is equal to 2J5?/a for a bee lattice [25],
depends on the direction along which the spin wave is
excited. For one monolayer Fe/W(110) the exchange
stiffness in the [110] direction is 4 times larger than in
the [001] direction [24]. For a 2 ML film the difference is
found to be smaller, but the tendency remains the same.
The physical reason for this anisotropic behavior can lie
in changes of interatomic spacing, as discussed above, or
in additional indirect spin interactions through the W
substrate [24]. In any case, the dependence of the ex-
change interaction on r;; must be taken into account in the
simulation of the magnetic ordering.

According to this argument we introduce three differ-
ent exchange constants J; for the three nonequivalent
pairs of neighboring magnetic moments. Hamiltonians
of that type are widely used in models of frustrated
magnetic systems [26]. We have explored different ratios
of J3:J,:J; (dark grey, light grey, and black bonds in Fig. 3,
respectively). Generally, the walls tend to be aligned
along the axis of the strongest exchange coupling. The
best overall accordance with the experiment is found for
ratio J3:J,:J; = 4:2:1, which is in good agreement with
Refs. [23,24] and the Bethe-Slater curve. For [111]
nanowires [Fig. 2(d)] the majority of the walls follow
the [110] axis. However, [331] walls are also found. For
[110] nanowires of 40 nm width [Fig. 2(e)] we also get
[110] oriented domain walls which cannot be expected
from isotropic exchange interactions. The walls are not
perfectly straight but show some irregularities. For ex-
ample, the wall is forced out of the [110] direction at the
rim of the nanowire. A similar behavior has also been
found experimentally [see the circle in Fig. 1(c)]. We have
also explored different orientations and strengths of the
in-plane anisotropy K. As already mentioned above the
only effect of a strong K, is an alignment of the magnetic
moments in the wall along the respective axis. The ori-
entation of domain walls is not influenced by K, showing
that the mechanism of wall orientation described here is
distinct from the one observed in bulk material, which is
governed by magnetic anisotropy and dipolar energy.

In conclusion, we have demonstrated by means of an
experimental study and extended Monte Carlo simula-
tions that in contradiction to the isotropic continuum
approximation the orientation of magnetic domain walls
in ultrathin films is governed by the atomic lattice struc-
ture and the set of nearest neighbor moments. The mag-
netic anisotropy and the magnetostatic energy, which can
govern wall orientations in bulk material, play a minor
role in the ultrathin limit.
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Lattice-dependent anisotropy in the orientation of magnetic
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Abstract

We demonstrate theoretically that a large class of ultrathin ferromagnetic films shows anisotropy in the domain wall
orientation in spite of the isotropy in the exchange interactions. The reason is an orientation-dependent density of
nearest-neighbor atomic bonds due to the symmetry of an underlying atomic lattice.

© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It has recently been shown that the magnetic anisotropy
and the magnetostatic energy, which can align domain
walls along certain crystallographic directions in bulk
material, play a minor role for the wall orientation in
ultrathin ferromagnetic films [1]. In case of low-symmetry
objects the orientation of domain walls is mainly
determined by the exchange interactions. Due to pseudo-
morphic growth the first few layers of a magnetic material
can adopt the lattice constant of a substrate. This often
leads to distortion of the atomic structure of a ferromagnet
and consequently to an anisotropy in the exchange
stiffness tensor [2,3]. Anisotropy of the exchange stiffness
may significantly affect the micromagnetic configuration of
domain walls and may lead to anchoring of the wall
orientation to certain crystallographic directions [1].

*Corresponding author. Tel.: +4940428386230; fax:
+4940428386368.
E-mail  address: vedmedenko@physnet.uni-hamburg.de

(E.Y. Vedmedenko).
'Financial support from the Interdisciplinary Nanoscience
Center Hamburg is gratefully acknowledged.

If the exchange interaction is isotropic it cannot affect
the global orientation of domain walls in bulk crystals of
cubic symmetry as both the spin and the real space are
isotropic. On the other hand, in films of a few monolayer
thickness the density of nearest-neighbor atomic bonds
per unit length may differ for different crystallographi-
cal directions because of reduced symmetry, i.e. the real
space is not isotropic any more. This may lead to the
orientational dependency of the exchange energy and,
hence, to the preference of some crystallographical
orientations. We study that possibility systematically
by means of Monte-Carlo (MC) simulations and within
a simple analytical approach.

2. Monte-Carlo simulations

First we discuss results of Monte-Carlo simulations
on a discrete lattice. The system Hamiltonian reads

H= — ZJ[W]Si . Sj +k; X:Sin2 0
(i) i

+DY (Si S 56 'ijzgsj : fij)) ’
i

3
Ty i
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doi:10.1016/j.jmmm.2004.11.356



88

where J,; denotes the effective nearest-neighbor
exchange coupling constant, D is the dipolar coupling
parameter, § and ¢ are the spherical angles and r;; the
vector between sites 7 and j. The coefficient & is the first-
order anisotropy per atom. For the MC computations
we consider one or two layers of classical, three-
dimensional magnetic moments S on different surfaces
of SC, FCC and BCC lattices of about 20000 effective
magnetic sites. The MC procedure is described else-
where [4]. We use a realistic ratio of the exchange and
the dipolar constants D/J = 107>, The exchange con-
stants between all pairs of nearest neighbors are
identical. The anisotropy constants have been widely
varied in the regime of vertical and in-plane magnetiza-
tion. The thickness of domain walls decreases with
increasing absolute value of k. However, the orienta-
tion of domain walls is not influenced by &, showing
that the mechanism of wall orientation described here is
distinct from the one observed in bulk material, which is
governed by magnetic anisotropy and dipolar energy.
Fig. 1 shows typical MC low-temperature domain
configurations found for SC(110) (a), BCC(110) (b),
FCC(110) (c) and FCC(100) (d) surfaces while Fig. 2
gives the structure of the corresponding unit cells. The
domain walls in SC(110) films are mainly oriented
along [001], while the walls in BCC(110) films are
oriented along the [110] direction (Figs. 1(a), (b) and
Figs. 2(b), (¢)). The domain walls of FCC(110) film

=

[112]
- 110] | :
(c)
Fig. 1. Top-view of MC domain configurations in 600 nm large

[001]
and 2 ML thick samples with: SC(110) (a), BCC(110) (b),
FCC(110) (¢} and FCC(100) (d) surfaces. Opposite domains
are imaged as dark and light areas. Exchange interactions are
isotropic, kT =0.05J, k1 =9 x 1073 7. Upper directions cor-
respond to (110) (a—) while bottom to (100} (d) surface.

(b)

(d)

[001]
[010]
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(Figs. 1c and 2d) are more disordered and can run along
[110], [1 T2] or intermediate crystallographic directions.
However, one never finds a [001] orientation. The
domain pattern of an FCC(100) film, shown in Fig. 1d,
is completely disordered. All possible orientations of
domain walls can be found in the magnetization
configuration. Similar results have been obtained for
all other surfaces of cubic crystals. Thus, for isotropic
exchange interactions the orientation of domain walls of
(110) surfaces of cubic crystals is highly anisotropic
while it is not the case for the (100) and (111) surface
orientations. Those results are consistent with experi-
ments where anisotropic wall patterns have been found
for Fe/W(110) films[1] while a disordered configuration
has been revealed for a Co/Au(111) [5]. Hence, the
crystal lattice and the set of nearest neighbor moments
can affect the wall orientation even for isotropic
exchange interactions. The physical reason for that
behavior is the different number of nearest-neighbor
bonds per unit length along the one or the other
direction. To make this statement and the results of MC
simulations more quantitative, we introduce a simple
phenomenological model to calculate the exchange
energy loss for domain walls along different crystal-
lographic directions.

3. Phenomenological model

Fig. 2 shows a top view of a conventional Bloch wall
(a) and unit cells of a double layer with a SC(110) (b), a
BCC(110) (c), a FCC(110) (d) and a FCC(100) (e)
crystalline lattice. Atoms are sketched as balls where
dark ones belong to the surface and light balls to
subsurface layer. Connections between atoms indicate
nearest-neighbor bonds. From Fig. 2(a) it is clearly
visible that the magnetization rotates along an axis
perpendicular to the plane of the wall while magnetic
moments belonging to planes which are parallel to the
plane of the wall are parallel. Since in a ferromagnet
neighboring spins hold the lowest energy when they are
parallel, the loss in the exchange energy due to the wall
formation results from the bonds which have non-zero
projection on the direction perpendicular to the course
of the wall. For example, if the wall is oriented along the
[010] direction of the FCC(100) surface (Fig. 2¢) the
magnetic moments connected by [010] bonds will be
parallel while moments connected by [00 1] bonds will
have a maximal possible mutual angle and, conse-
quently, a maximal increase in the exchange energy
AE[J?OI]. The moments connected by [011] and [011]
bonds will have intermediate mutual angles as they are
neither parallel nor perpendicular to the direction of
energy loss. It means, that the local increase in the
exchange energy due to the magnetization rotation in a
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Fig. 2. Schematic top view of a Bloch wall, the magnetization is represented by arrows (a). Top view of unit cell of 2 ML thick SC(1 1 0)
(b), BCC(110) (c), FCC(110) (d) and FCC(100) (e) films. Dark and light balls denote the atoms belonging to the first and the second
layer correspondingly. Nearest-neighbor bonds are shown as connections between the atoms.

domain wall will be proportional to the projection of an
atomic bond on the axis perpendicular to the wall
orientation.

To obtain losses in the exchange energy due to
formation of a domain wall in this model, in a first step
projections of all bonds to the axis perpendicular to the
plane of the wall (P [x,;) were calculated for single and
double layers of (100), (111) and (110) surfaces of
BCC, FCC and SC crystals. The nearest-neighbor bonds
have been assumed to be of unit length. The length and
the number of projections P |y, for double layers with
(110) surface are brought together in Table 1. The loss
in the exchange energy per unit cell for a wall along one
of the [xyz] directions has then been calculated by
summing up the exchange coupling constant
(Jxy = 1.0) multiplied by P, [xy; for all bonds in the
unit cell

AE[nyZ][a‘u./unit CCH] = Z J[xyz] . PLto[xyz]~
i

For a wall along [112] of an FCC(110) lattice, for
example, this results in (see also Table 1)

=574 (a.u.).

[ 2 2
AEUTA — 3. 4+ 4. Z14.
J \/[]3 + \ﬂ]3 =+ Jin2
The exchange energy of a domain wall per unit cell is
smallest for the [1 1 0] direction of the BCC(110) and for
the [0 0 1] direction of the SC(1 10) surface. In case of an

FCC(110) crystal two orientations have similar energy.
These are the [112] direction with AE}!'? =5.74 and
[110] with AE}'9 = 5.65. Hence, the exchange energy
cost in the systems described above is orientation
dependent. The preferential orientations of walls derived
in the phenomenological model are [1 10] for BCC(110)
and [00 1] for SC(1 10) crystalline films. For FCC(110)
the wall orientation is defined by the competition
between [110] and [112] directions. The cost in the
exchange energy AE7” for othersurfaces is constant and
does not depend on the wall orientation. Hence, for
[001] and [111] surfaces of a cubic crystal the domain
walls are predicted to have no preferential orientation.
The results described above are in agreement with those
of MC simulations and experiments and give a
quantitative measure of the orientation-dependent
exchange energy loss due to formation of a domain wall.

4. Conclusion

In conclusion, we demonstrate that the orientation of
magnetic domain walls in ultrathin single-crystalline
films of cubic symmetry with (1 10) surface orientation
is highly anisotropic while other surface orientations
lead to isotropic wall configurations. The anisotropy is
due to the orthorhombic-like symmetry of (110)
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AE_[;W 3 and the projections of nearest-neighbor bonds onto the direction perpendicular to the plane of the domain wall for double layer

films with (110} surface orientation

Stacking Wall orientation (xyz) AEECJ’Z] Junit cell (a.u.) P (oxy"0f bonds running along
[001] 4) [110] (4) [111](8)
BCC [001] 8.52 0 L —1
Ve Vi
(110) [rtiof 6.00 ! 0 3
I 6.76 1 3 1
o & o &
[1103) (1121 (4) 11214
FCC [001] 7.00 1 1 :
110 I 5.65 0 L -1
(110) (170 2 /i /i
[112] 5.74 VI VI T
SC 0011 [1101(2)
(110) [001] 1.41 0 L
Vi
[L10] 2.00 1 0

“Number of bonds per unit cell is given in brackets.

surfaces of cubic crystals, which leads to an orientation-
dependent density of the nearest-neighbor bonds.
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The search for uncompensated magnetic moments on
antiferromagnetic surfaces is of great technological
importance as they are responsible for the exchange-bias
effect that is widely used in state-of-the-art magnetic
storage devices. We have studied the atomic spin structure
of phase domain walls in the antiferromagnetic Fe
monolayer on W(001) by means of spin-polarized scanning
tunnelling microscopy and Monte Carlo simulations. The
domain wall width only amounts to 6-8 atomic rows.
Although walls oriented along (100) directions are found to
be fully compensated, detailed analysis of (110)-oriented
walls reveals an uncompensated perpendicular magnetic
moment. Our result represents a major advance in
the field of antiferromagnetism, and may lead to a
better understanding of the magnetic interaction between

ferromagnetic and antiferromagnetic materials.

nature materials | ADVANCE ONLINE PUBLICATION | www.nature.com/naturematerials

today’s information technology as they are used to pin

the magnetization direction of intrinsically bistable thin
ferromagnetic films by the exchange-bias (EB) effect. This effect,
discovered about 50 years ago"?, is based on the direct exchange
interaction between an antiferromagnet and a ferromagnet it is
in contact with, leading to a sign-dependent magnetic coercivity
of the ferromagnet. Although the underlying physics of the EB
effect was already correctly described in the original publication?,
the rather small size of the effect could only be explained recently.
Namely, it was found that the vast majority of the antiferromagnet’s
surface spins are inactive, and only a few uncompensated spins
contribute to the effect*”. Up to now, spin—flop coupling®®,
grain size™®, domains due to interface roughness’ and non-
magnetic defect sites'®'" have been discussed as possible sources
of uncompensated spins.

Owing to their essentially vanishing net magnetization, the
experimental imaging of antiferromagnetic domains is particularly
difficult. Only recently, domains’*™** and domain walls"> (DWs)
have been observed by photoelectron emission microscopy with
linearly polarized X-rays. The contrast mechanism of this technique
relies on X-ray magnetic linear dichroism, which depends on
the angle between the electrical field vector E and the sample’s local
magnetic axis A. Consequently, it is only sensitive to orientational
changes as schematically represented in the top panel of Fig. la.
So-called phase domains (bottom panel of Fig. la), where the
antiferromagnetic spin structure shifts laterally by one structural
lattice constant can only be detected indirectly by the presence
of DWs'. However, owing to spatial-resolution limitations,
X-ray magnetic linear dichroism—photoelectron emission
microscopy cannot detect details of the spin structure of DWs
on the atomic scale. For this purpose, spin-polarized scanning
tunnelling microscopy (SP-STM) is an ideal tool because
its capability for atomic resolution has been demonstrated
on ferromagnetic’® and antiferromagnetic surfaces” . STM
with non-magnetic tips is only sensitive to the spin-averaged
local density of states n(r, Ez) at the Fermi level (low-voltage
approximation) and tip position r. The intrinsic spin-polarization
of magnetic tips, Pr = (n' —n')/(n' +n'), where n' and n' are

Antiferromagnetic surfaces play an important role in
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Figure 1 Schematic representation and experimental observation of DWs at
antiferromagnetic surfaces. a, Scheme of an orientational domain wall (0-DW) and
a phase domain wall (p-DW). b, SP-STM image of 1.1 AL Fe/W(001) measured with
an Fe-coated probe tip at 1o H= 2 T. The antiferromagnetic structure, which is
shown at higher resolution in the inset, exhibits long-range periodicity without any
DW visible in the field of view. Only at higher defect density do p-DWs appear, which
can be imaged with ¢, out-of-plane (.oH=2T) and d, in-plane sensitive tips (no
field). In the constriction between the two double-layer islands a p-DW, which runs
along the [010] direction, can be seen. At the position of the p-DW, the magnetic
structure shifts by one atomic site, that is, half the magnetic periodicity (see

dashed lines).

the majority and minority density of states, introduces a spin-
polarized contribution to the tunnelling current I(r), which scales
with the projection of the unit vector of tip magnetization ur onto
the local magnetization density of states at Ez, m(r, E;) (ref. 20):

I(r) < n(r, Ex) + Prup -m(r, Ep). (1)

This leads to a magnetic contribution to constant-current mode
images of periodic magnetic structures, which is superimposed on
the conventional topographic image'®'”. Here we demonstrate—
on the model system of an antiferromagnetic Fe monolayer on
W(001)'®—that SP-STM can also be applied to non-periodic and

non-collinear spin structures on the atomic scale. Our experimental
results reveal that the phase DWs (p-DWs) in this model system
are only 6-8 atomic rows wide, and that the wall centre is
located between atomic rows. Together with Monte Carlo (MC)
simulations we can infer the existence of uncompensated spins in
p-DWs that are oriented along (110) crystallographic directions.
Depending on the surface density of these p-DWs the resulting
moment may lead to a significant contribution to EB.

The samples consist of iron films (nominal thickness of 1.1—
1.4 pseudomorphic atomic layers (AL)) deposited onto a stepped
W(001) single crystal held at slightly elevated temperature (T =
400 £ 50 K). Figure 1b shows a constant-current image of 1.1 AL
Fe/W(001) measured with an Fe-coated tip at u,H =2 T. This field
leaves the sample’s antiferromagnetic structure unchanged as it is
determined by the much stronger exchange coupling'®. Although
the topography seems flat if measured with a non-magnetic tip
(not shown here), the use of an out-of-plane sensitive magnetic tip
leads to the c(2 x 2) superstructure visible in Fig. 1b. The ¢(2 x 2)
superstructure is caused by the above-mentioned spin-polarized
contribution to the tunnelling current (equation (1)): because the
spin has to be conserved during an elastic tunnelling process,
the current (at equal distance) is higher (lower) if the magnetic
moments of the tip and sample are parallel (antiparallel)*®?'. In
the constant-current mode, the feedback loop keeps I(r) at a
set-point value I, resulting in a magnetic-induced corrugation
that amounts to 4 pm in Fig. 1b. The experimental results prove
that the Fe monolayer on W(001) is indeed a perpendicular
antiferromagnet with the magnetic moments of nearest-neighbour
atoms pointing alternately up and down' (see inset). Although
numerous defect sites, such as impurities and ad-atoms as well as
ferromagnetic second-layer islands are visible, perfect long-range
magnetic order without any DW is found on a scale of about
2 um x 1 pm (see the Supplementary Information).

Only if the defect density was increased, for example, by
increasing the Fe coverage to 1.3 AL, did we occasionally find
short (1-2 nm) segments of p-DWs as shown in Fig. lc. This
particular DW is clamped between two double-layer islands, and
extends along the [010] direction. By following the dashed lines in
Fig. 1c along (110) directions, it becomes apparent that the phase
of the magnetic lattice shifts at the position of the wall by one
atomic site. Within the p-DW, which is only a few lattice sites
wide, the magnetic signal seems rather blurred because here—
regardless of whether the rotation takes place parallel (Bloch-like)
or perpendicular (Néel-like) to the wall—the magnetic moments
of the tip and sample are orthogonal. The in-plane c(2 x 2)
superstructure within the same p-DW can be observed after
releasing the external field (Fig. 1d), which makes the Fe tip
sensitive to the in-plane component.

The internal spin structure of DWs was investigated
theoretically by the MC method, which is capable of simulating
complex spin structures of antiferromagnets”. It is based
on the classical Heisenberg model, and includes long-range
dipolar interactions

H=J/Y s s+])y 8§
(i.j) {(i.j)

- CRUICED) i
i)3 _SW) _KIZ(SZ) ’

+D2ﬁ:<

where §' is a three-dimensional unit vector-spin, which is separated
by the distance 7. (i,7) and ((i,])) denote nearest-neighbour and
next-nearest-neighbour pairs, respectively. All material parameters
of Fe/W(001) were obtained from density functional theory
calculations®. The nearest- and next-nearest-neighbour exchange

Si
(r
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Figure 2 MC simulation of antiferromagnetic DWs. a, Rendered perspective
image of the quenched spin structure of an antiferromagnetic material as obtained
by MC simulation. A DW, which exhibits three different orientations: along the (i)
[110], (ii) [100], and (jii) an intermediate direction, can be seen. Calculated STM
images for b, out-of-plane and ¢, in-plane sensitive magnetic tips.

parameters are ]1’] =20.3 meV and ]f = 2.4 meV, respectively,
and the anisotropy energy density is K; = 2.4 meV per atom
(ref. 18). The magnetic dipole—dipole interaction is calculated by
D = (uog’1},)/ (4nd®), with i, the permeability of the vacuum,
Mr = 2.67 pp the magnetic moment of antiferromagnetic iron
and d = 0.3165 nm the interatomic Fe-Fe distance'®. To avoid
the sample eventually relaxing into a single-domain state it had
to be quenched rapidly from a random start configuration to the
measurement temperature, that is, T ~ 13 K. A typical result is
shown in Fig. 2a. We find no preferred orientation of the DW but
three segments oriented approximately along (i) the (110), (ii) the
(100), and (iii) an intermediate direction.

To compare the theoretical spin structures with experimental
STM data, we need to calculate SP-STM images of arbitrary non-
collinear magnetic structures without having access to the full
electronic structure of the sample. We extend the independent
orbital approximation® to spin-polarized tunnelling by making the
additional assumption that the electronic structure at every surface
atom « is the same, except for a rotation of the local quantization
axis by an angle ¥, with respect to the tip’s magnetization direction
u;. Here, we assume an effective spin-polarization of the tunnel
junction Pr- Ps = 0.3, with P 5 being the spin-polarization of the
tip and the sample, respectively. We have checked that our model
correctly reproduces the change from a non-magnetic STM image
to an SP-STM image'’ of periodic collinear and non-collinear
magnetic structures even at small effective spin-polarization.

The calculated STM images shown in Fig. 2b,c are in good
qualitative agreement with the experiment (see Fig.lc,d): the
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Figure 3 Spin configuration of [010]- and [110]-oriented DWs. Schematic
representation of p-DWs that are centred between (top row) and on top of atomic
rows (middle row). (bottom row) Part of a p-DW oriented along the [010] (left) and
the [110] direction (right) from Monte Carlo simulations. The grey scale gives the
calculated out-of-plane component of the magnetization.

¢(2 x 2) superstructure is clearly observed in the domains (DWs)
with an out-of-plane (in-plane) sensitive tip. As also found
experimentally, the apparent DW width is slightly larger for in-
plane than for out-of-plane sensitive tips. This can be explained
on the basis of equation (1): the magnetic corrugation at the DW
scales cosine-like for an out-of-plane sensitive tip but sine-like for
an in-plane sensitive tip, with the former having a rather steep
zero-crossing at the DW position. The very weak topographical
(non-magnetic) atomic contrast observed wherever ur L m(r) (see,
for example, the domains in Fig. 2c) is below the experimental
resolution limit*>*.

To discuss whether p-DWs can cause uncompensated magnetic
moments, we have schematically illustrated four principal types
of p-DWs in Fig. 3. The p-DWs may be centred between (top
row of Fig.3) or on top of atomic rows (middle row), and
either oriented along the [010] (left column of Fig. 3) or along
the [110] direction (right column), respectively. For the ease
of illustration, Fig.3 shows a fully coplanar situation, but the
following arguments are also valid for a system such as Fe/W(001),
where the easy axis is perpendicular to the surface and to the
wall direction. The schematic diagram reveals that—irrespective
of their symmetry—(010)-oriented DWs are always compensated
because adjacent spins within any row parallel to the wall point
in opposite directions. The situation is different for p-DWs
along (110) directions as their magnetic moments do not cancel.
The direction of the uncompensated moment depends on the
position of the p-DW centre: if the p-DW centre is on top
of an atomic row it points along the spins that form the DW
centre, in the case of a wall that is centred between two atomic
rows it is along the quantization axis within the domains. The
bottom row of Fig.3 shows the perpendicular component of
the magnetization as obtained from MC simulations for p-DWs,
which almost perfectly run along the [010] (left column) and the
[110] (right column) direction. In agreement with the arguments
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Figure 4 Detailed view of a (110)-oriented p-DW. a, Theoretical spin structure, b, simulated, and ¢, experimental SP-STM image of a p-DW in the out-of-plane
antiferromagnetic Fe monolayer on W(001). d, Height profiles drawn at the positions of the correspondingly coloured lines in ¢ along the [110] (upper panel) and the [010]
(lower panel) direction. Middle panel: sum (black) and difference (grey) of the line profiles shown in the upper panel. The wall is about 1.6-nm wide, and its out-of-plane

component exhibits mirror symmetry.

mentioned above, the [010]-oriented wall is compensated (average
total magnetization < 10™* ug per nm DW length). Although
not perfectly mirror-symmetric, the DW centre of [110]-oriented
p-DWs is always found between two atomic rows and—in
agreement with the uncompensated moment in the simple
sketch—a finite perpendicular moment of about 0.6 (. per nm
DW length remains. We can only speculate about the cause of
the deviation from perfect mirror-symmetry: possibly it is due to
thermal fluctuations or an incommensurable DW width.

Now we want to focus on a wall approximately directed along
the (110) direction. A closer view of the azimuthal orientation
of spins within the wall of Fig.2a (middle of segment (i)) is
shown in Fig. 4a. As mentioned above, the MC simulations find
the DW centre between two atomic rows. For clarity the atomic
rows are numbered successively 1-5 with respect to their distance
from the DW centre in Fig. 4a. The wall centre is formed by
two rows 1 with a predominant in-plane orientation (6 > 65°).
With increasing distance from the DW centre, the moments tilt
more and more into the out-of-plane direction; the in-plane
component of rows 4 and 5 is already very small. Apparently,
the wall is 6-8 atomic rows wide and Bloch-like. Comparing
equidistant atomic rows located on opposite sides of the DW centre
it becomes clear that the in-plane component is reversed, whereas
the out-of-plane component is equal. Thereby, the integrated
in-plane component of magnetization is perfectly cancelled but,
interestingly, a non-vanishing net magnetic moment remains for
the out-of-plane component.

Figure 4b and ¢ shows a calculated and experimental SP-
STM image of such a wall, respectively. Although there are some
differences regarding details of the contrast within the DW, the
width and general appearance of the DW is well reproduced.
To gain a better understanding of the experimentally observed
structure we have plotted two experimental line sections taken
on adjacent atomic rows along the [110] direction, that is,
perpendicular to the wall (Fig. 4d (upper panel)). These two rows
are approximately equally distant from the termination points of
the DW. The middle panel shows the sum and the difference of
these lines in black and grey, respectively. The difference (grey)

shows an almost constant signal of opposite sign at the left and right
rim of the line section, that is, far away from the DW centre. These
regions (domains) are connected by a constant slope that extends
over approximately 1.6 nm, which corresponds to the wall width
of 6-8 atomic rows mentioned above. The sum (black) reveals that
the average out-of-plane component of these atomic rows is mirror-
symmetric. The mirror-symmetric appearance, which is also found
in the line profile taken along the [010] direction (lower panel of
Fig. 4d), indicates—in agreement with the above-mentioned MC
calculations—that the DW centre is located between two atomic
rows. This is also confirmed by an interpolation of the atomic
periodicity from the two domains into the DW (arrows in lower
panel of Fig. 4d). Possibly, the position of the DW centre moves
out of a mirror-symmetric position between two atomic rows when
approaching the termination points of the DW that are outside the
field of view of Fig. 4c. Although we did not study the behaviour
at the rim of the antiferromagnetic monolayer in detail, a similar
effect appears in our MC simulations, best visible at the bottom-
left edge of the spin disc in Fig. 2.

Owing to the fact that DWs in antiferromagnets cost exchange
energy but cannot lower the dipolar energy, they are very rare
and short on clean surfaces. However, we believe that they
may be much more frequent in a typical EB situation. Here,
the antiferromagnet is covered with a ferromagnetic film that
typically has a higher magnetic ordering temperature than the
antiferromagnet. Consequently, the antiferromagnet is in contact
with a ferromagnet when it orders magnetically. In this case, we
expect that the exchange coupling to the ferromagnet induces a
relevant number of p-DWs. Whether the resulting uncompensated
moment—in addition to moments that arise from known sources
as grain size*”®, step-edges’, and non-magnetic defect sites'®"'—
significantly contributes to EB, is beyond the scope of our paper.

METHODS

The experiments were carried out in an ultrahigh-vacuum system (Omicron
Multiprobe MX) specially designed for magnetic imaging®. Within a cryostat
(on the basis of the model spectromag) from Oxford Instruments, it contains a
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home-built low-temperature (T = 13+ 1 K) scanning tunnelling microscope?,
which is equipped with a tip-exchange mechanism allowing the in vacuo
preparation of magnetic thin-film tips*'. We used Fe-coated probe tips,
which—in the absence of an external magnetic field—are magnetically in-plane
sensitive with respect to the sample surface. Typical tunnelling parameters in
this study were U =4 mV (sample bias) and I, = 30 nA (set-point of the
tunnelling current). The tip magnetization can be reversibly forced into the
direction along the tip axis by the field of a superconducting magnet
(maximum field o H = 2.7 T) leading to out-of-plane sensitivity.

Received 28 November 2005; accepted 23 March 2006; published XX Month XXXX.
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By means of Monte Carlo simulations, magnetic configurations wagiticesare shown to appear in ultra-
thin magnetic films with exchange and dipolar interactions. The stability of these vortices is studied in detail.
The presence of perpendicular anisotropy and external magnetic field is also investigated. A magnetic soliton
is shown to appear during in-plane magnetization revefSai163-18269)01005-X

Recent experiments on epitaxial magnetic layaeve in-  nonzero only for nearest-neighbor couplingsis the dipolar
troduced a class of two-dimensior(@D) magnetic systems. coupling parameter and the running site subscripasd j
Different complex domain structures with some evidence fordefine the in-plane vectar;. The parameteA measures the
defects have been observed in thin films and bilayer systemserpendicular single-site anisotropy energy. The external
by means of Foucault imagirfg’, and in nanostructures, by field H may have any direction.
magnetic force microscopy experimefit€omplex magnetic Simple remarks can be deduced from a scaling approach.
structures are inherent in such systems because of competihey enable us to consider very large samples which could
tions between short-range and long-range interactions. Reot be introduced directly in the present numerical computa-
cent theoretical works on domain structures of vector spingion. Let us define the dimensionless parametér
in magnetic monolayers have been performed either by semi=D/(Ja®) with the lattice parametes. Without anisotropy
analytical calculations on conjectured configuratifjm,by and without external field, the scaling paramegeremains
Monte Carlo simulation.” These theoretical studies provide the only free variable: Different ratidd/J can be considered
evidence for the existence of several solutions for spin conas issued from a single case with a giwérvalue but with
figurations. Major questions remain in such 2D complex sysdifferent effective lattice parametess As usual, this size
tems: Are there uniform stable spin configurations or notscaling is valid as far as the discrete character of the lattice
and if not, are there intrinsic topological defects and how are&an be neglected. Thus increasing the dipolar coupling
they organized? In order to answer these questions, numesivhile keeping the exchange couplidgonstant amounts to a
cal studies of the stability of realistic magnetic configura-mere increase of the effective lattice paramedern the
tions with vector spins are needed. This is the aim of thisysual magnets, the rati®/(Jad) is of the order of
paper. Spin configurations of much larger systems than thosgy=3_10-4, wherea, is a typical atomic distance in metals.
considered befofd are obtained by means of extensive Thus, for D/J=0.1, a~5a,-10a, and for D/J=1, a
Monte Carlo(MC) treatments: Initial random configurations ~ 10a,-20a,. So large values ob/J are relevant to large
are submitted to a long annealing at a high enough temperagmples. In the present work, we used large valud/dfto
ture followed by a stepwise slow cooling down in order to consider scales much larger than a few tens of atomic dis-
obtain equilibrium spin configurations at very low tempera-igpces.
ture. Two particular configurations both with and without | the present calculations, samples with free boundaries
MC relaxation are also studied for energy comparison.  are considered. It is well known that dipolar contributions

The general Hamiltonian of a monolayer lattice in 5§ gepend on the shape of the sample. This is the demagnetizing
plane with three-component vector spiisand S=1 in-  fie|d effect. Without anisotropy and without external field,
cludes local exchange, dipolar interactions, perpendicular ansyy final MC spin configurations at very low temperature are

isotropy, and external field: in-plane, in keeping with known results from magnetostatics.
S5 (S-S In addition, the boundary-layer spins are in general parallel

. . r . r . . . .
H:—E jS.SJrDz”: ; —3 ij - ij to the sample boundary. This is in agreement with the van

den Berg’'s geometrical approach to in-plane domain struc-
tures in 2D spin configuratiorfsWe present results for disk-
_ _ shaped and rectangle-shaped samples. Typical low-
AEi 32:2 E, H-S. @ temperature spin morphologies obtained in this work are
shown in Fig. 1 for disks of 10192 spins on a triangular
HereJ is the exchange interaction which is assumed to bdattice withD/J=0.1, D/J=1, andJ=0, respectively. The

(ij) I

0163-1829/99/5)/33294)/$15.00 PRB 59 3329 ©1999 The American Physical Society
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sample diameter covers about 106 effective spin sites. The
MC calculations have been performedgthout cutoff length

in the dipolar interactions. As will be discussed below, this is
important because the screening of dipolar interactions due
to in-plane configurations is very weak.

In the caseD/J=0.1, i.e., at submicrometer size in a re-
alistic material(disk diameter~500a,—100@,), the ener-
gies per spin obtained for the above-mentioned configura-
tions are all quite close to each other. The ferromagnetic
configuration has even a lower energy than the optimal MC
configuration shown in Fig. 1 which contains only a few
vortices. Thus for a sample of such a size, only one or two
vortices are present in the ideal structure.

WhenD/J=1, i.e., at a larger size in a realistic material
(disk diameter~1000a,—200@,), the ferromagnetic con-
figuration has the highest energy among all the considered
configurations. This is evidence for the stability of configu-
rations with several vortices in the sample at such a mesos-
copic size.

Finally, in the pure dipolar case, i.e., at a macroscopic
scale in a realistic material, configurations obtained from MC
simulations present many vortices with an energy per spin
somewhat higher than the one obtained for just a single cen-
tral vortex. In fact, a realistic spin configuration contains
probably several vortices but less than what we found after
several thousand MC steps per spin when starting from a
random initial configuration. The reason for this limitation is
that the single-spin MC procedure makes any vortex motion
very difficult because vortices are correlated. However, ex-
pulsion of vortices is observed, generally by pairs, during a
long time MC relaxation at a low temperature. Every pair
expulsion is associated with a small stepwise energy drop.
Thus the relaxation process is very long. This shows evi-
dence of the strong frustration effects at all scales due to the
long-range dipolar interactions.

All structures shown in Fig. 1 exhibit severabrtices
The numbers of clockwise vortices and counterclockwise
vortices are nearly equal. More precisely, one may define a
local vorticity parameter as;=(a/2)(curl S),, with |q;
<1. This enables us to draw up the vorticity map of our
samples. Figure 2 shows an example of the sign and strength
of the spin field vorticity for the pure dipolar case. Spin sites
with vorticity of strong absolute value define two interwoven
networks of continuous lines which link the cores of vortices
of the same chirality. It should be noticed that these strong
vorticity lines are the domain walls. The local vorticity pa-
rameterg; defined above provides an elegant way to find out
all domain walls in a given sample. Let us mention that the
strong vorticity lines are somewhat similar to von ri<en
streets which link vortices of the same sign in 2D turbulent
flows® Such an analogy is probably connected with the
strong spatial inhomogeneity of the dipolar field.

The vortex spatial distribution is analyzed by means of
pair-distribution functions(PDF). When vortices of both
signs are considered all together, they are distributed at ran-
dom, as seen in the pictures of Fig. 1; their PDF has no
significant structure. However, the PDF of vortices of a spe-
cific sign gives evidence for short-range repulsion. Thus the

FIG. 1. Low-temperature spin configurations. Samples are disk§resence of vortices of both signs ensures a medium-range

of 10192 vector spins on a triangular lattiog D/J=0.1, (b)
D/J=1, (c) pure dipolar couplingd=0.

screening of the effective interaction between vortices. It
must be noticed that the introduction of any cutoff length in
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FIG. 2. Enlarged portion of Fig. 1c) showing domain walls
defined byg; (thick arrows. The walls connect vortices of the same
sign. Here pure dipolar couplinggT/(D/a%)=0.01.
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T
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the dipolar interaction leads at the end of the MC thermali- -4.5 ! :
zation process to a rather ordered vortex lattice. The lattice :'0. 05 000 05 1;0
. N X pplied in-plane magnetic field (J=1)

parameter of this lattice is approximately equal to the cutoff

length. This has been checked for different cutoff lengths. It FIG. 3. In-plane field hysteresis loofiop) magnetization(bot-

proves that the screening is very sensitive to the long-rang@m) spin energy vs applied field.

part of the dipolar coupling. However the spin energy is only

just altered by the cutoff. For instance, in a rectangle-shaped When introducing a large enough perpendicular anisot-

sample of 10201 spins with pure dipolar couplings, and foropy in the problem, all MC relaxed configurations contain

cutoff lengths of 15 and 20a, energy differences compared many out-of-plane spins. The average va{$3) is a good

to the full coupling case are found not to exceed 1%. Inmeasure of the transition from in-plane spins towards per-

liquid crystals, similar ordered lattices of topological defectspendicular spins. This spin reorientation transition occurs

have been observed, as in cholesteric and smectic thin filmghen the uniaxial anisotropy energy is of the order of mag-

under mechanical tensidfi.Here electric dipolar couplings nitude of the dipolar interaction energy. It is characterized by

play the same role as magnetic dipolar interactions in outhe appearance of several domains of twisted bunches of

case'! In liquid crystals, ion-induced screening yields anearly up spins or down spins. These domains are sur-

natural cutoff length and could be the reason for the appearounded by domains with almost in-plane spth# detailed

ance of such an order. study of the reorientation transition will be given
For disks of 10192 spins on a triangular lattice, the low-elsewherg?

temperature energies per spin for differdtJ ratios are

compared in Table | fofi) three MC relaxed magnetic struc-

tures derived from different initial configurations, and €y

two unrelaxed particular configurations. In all considered

cases, the lowest energy is obtained for the configuration

with a single central vortex. After a long relaxation process

which ends at a very low temperature, the configuration with

a single central vortex remains the one with the lowest en-

ergy among the considered configurations. This proves the

stability of vortex configurations in all these cases.

TABLE I. Comparison of average energies per spin at very low
temperature. Energy urit] (=D for pure dipolar case

Energy per spin

D/J=0.1 D/J=1 J=0
MC relaxation -3.220 —5.662 —2.701
Ideal ferro —3.227 —5.595 —2.632
Ferro+MC —3.223 —5.619 —2.616
1 central vortex —-3.234 —5.703 —2.743
1 vortex+ MC —3.231 —5.700 —2.740 FIG. 4. Snapshot of a double-wall magnetic soliton at the in-

plane coercive fieldD/J=0.1H,/J=—0.6kgT/J=0.01.
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The introduction of a high enough external figld nor-  wave, i.e., as &oliton with a double wall, is also evidence
mal to the surface leads also to the appearance of out-ofer strong nonlinear effects in this problem. Let us mention
plane spins with a similar transition towards an Ising-typethat some snapshots obtained in this work are very similar to
system. However, this transition occurs at a field value whichhose found experimentally for soft thin films; see Fig. 8 of
is much larger than the dipolar field ofe'3On the contrary, Ref. 14.
the application of a moderate in-plane external field is In conclusion, let us mention that vortices were intro-
enough to saturate the in-plane magnetization. A typicaljuced as intrinsic defects in the general problem of 2D
rectangle-shaped magnetizativersusapplied field hyster-  systemd® What we have shown here is that vortices are not
esis loop and the respective energgrsusfield curve are oy possible patterns in 2D magnetic systems with long-

reported in Fig. 3 forD/J=0.1. This gives evidence for @ range dipolar interactions but that they do belong to the
sharp quasistatic coercive field. Taking advantage of thg; e spin configurations in ultrathin films.

slowness of the MC relaxation process at low temperature,
we are able to show in Fig. 4 fdb/J=0.1 a typical spin E.Yu.V. acknowledges financial support from the French
snapshot taken during magnetization reversal process. Thdinistry of Education(MENESR. Part of this work was
latter occurs at a field just larger than the coercive field. Thalone within the framework of Contract No. CHRX-CT93-
rapid propagation of the in-plane domain wall as a solitary0320 of the European Economic Community.
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Abstract

The multipole moments and multipole-multipole interactions of uniformly
polarized particles have been calculated based on the fundamental theory of
electrostatics. As the polarization of the particles is uniform, only surface
charges are considered. The polarization may have its origin in magnetization
or ferroelectricity or be an intrinsic property of molecules. It is demonstrated
that, depending on the geometry of the particles, the higher order interactions
can be comparable to or even stronger than the dipole—dipole interaction. The
higher order moments give rise to an additional energy contribution in arrays
of close packed polarized nanoparticles. The influence of particle aspect ratios
as well as array periodicity is discussed.

1. Introduction

Miniaturization plays an important role in modern physics and chemistry as it gives access
to new phenomena that can be used in technical applications. It is desirable to increase
the density of clusters, dots and micelles, which is correlated with a decrease of their size.
Often the particles are polarized or charged. In that case the particles interact. The strength
of the interaction increases with decreasing interparticle distance and can be described by
means of the multipole expansion. A general calculus for multipole moments can be found
in textbooks [1]. However, higher order moments are only calculated to describe molecular
orbitals in physical chemistry [2]. In all other cases (magnetic arrays, ferroelectric arrays,
colloids etc) the calculations are restricted either to the pure dipole—dipole interaction between
the dots [3] or to the first multipole correction to the dipolar coupling [6, 4, 5]. The higher
order contributions have not been studied systematically as terms beyond the dipolar one are of
minor importance for special cases of zero-thickness in-plane magnetized squares [4] /discs [5].
Only that kind of particles has been addressed in the literature. However, experimentally and
industrially produced arrays consist of particles of variable geometry depending on material

0953-8984/04/499037+09$30.00  © 2004 IOP Publishing Ltd ~ Printed in the UK 9037

147



148 8. Papers on Dipolar and Multipolar Systems

9038 N Mikuszeit et al

and method of preparation. Thus, a general procedure for the calculus of multipole moments
of polarized nanoparticles as a function of aspect ratio and symmetry is highly needed as the
knowledge of the interaction energy of higher order multipole moments is crucial for further
investigations on the magnetic order and magnetic phase transitions in stray field coupled
systems.

The multipole expansion may be made either in Cartesian or in spherical coordinates.
The advantage of the Cartesian expansion is that only real numbers are required. However,
each term of the expansion is a tensor. The order L of the tensor is equivalent to the order
of the expansion. The number of independent tensor components of a three-dimensional
symmetric tensor increases with the square of L, thus it is a formidable task to treat terms with
rank higher than two (quadrupole moments) [4, 6]. The spherical expansion needs complex
numbers but its complexity does not change with the order of expansion as the number of
independent components is proportional to L. So, it seems that almost any order can be
calculated within reasonable effort. However, the treatment of a planar charge distribution in
spherical coordinates leads to very complicated integrals. To avoid this difficulty we use the
spherical harmonic formalism but express it in Cartesian coordinates. In this way we define
a general procedure to calculate the multipole moments and the corresponding interaction
energies of axially symmetric particles. This symmetry class has a wide range of application,
e.g. in storage media [7-9]. We demonstrate that for prismatic particles with mirror symmetry
only multipole moments of the same symmetry are different from zero. All other multipolar
contributions are extinct. This permits us to decrease drastically the computational efforts for
calculation of magnetostatic interactions in magnetic/electric arrays. For certain geometries
the interaction due to higher order moments is of the same order of magnitude as the dipolar
coupling. Hence, it must be considered in the description of order phenomena in close packed
arrays or hysteresis and switching behaviour of magnetic or ferroelectric particles.

For the sake of simplicity we restrict the discussion to particles with n-fold rotational
symmetry that are polarized parallel to the axis of symmetry or have charged base planes.
Although we discuss in this paper only axial systems with point-symmetric charge distributions
of negative parity the theory can be easily generalized to positive parity or other geometries,
e.g. in-plane polarized discs.

2. Multipole moments of symmetric particles

The multipole moments of a charge distribution p(r) in spherical coordinates r = (r, 8, ¢)
are defined by [1]

sz=/ dV p(r)Rim(r) ey
Vv

where the integration is performed over the volume V that encloses p(r), weighted by the
regular normalized spherical harmonic R;,, () [1] (see also (4))

4r
2[+1
The spherical harmonics Y;,, (0, ¢) represent a complete set of orthogonal functions on the

sphere [10]. They are numbered by two independent parameters / and m corresponding to the
two degrees of freedom on a sphere 6 and ¢. The far-field potential is [1]

Rim(r) = Ym0, 9). 2)

1 00 ]

P(r) = o Yo n(m0;, 3)

=0 m=—1
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Figure 1. Scheme of a nanoparticle with fivefold (n-fold) symmetry. Every surface can be divided
into five (n) equivalent isosceles triangles with edge length d. The particle is polarized in the
z-direction.

(This figure is in colour only in the electronic version)

with the irregular normalized spherical harmonics

| 4 Yim(6,9)
Iim(r) = U+l “)

and Q;,, the complex conjugate of Q;,,. The field can be determined as the negative gradient

of the potential FF = —V®. To ensure the uniqueness of the expansion, the origin of the
coordinate system must coincide with the centre of charge
_ [ydvr-lpm) )
T fydVie)

i.e. 7, = 0; otherwise even the expansion of the potential of a point charge includes higher
order moments. The remaining freedom of rotation is handled by tensor transformation rules
for spherical harmonics given in [10].

2.1. The relationship between particle symmetry and multipole moments

Let us assume a nanoparticle with n-fold symmetry (n > 1) within the x—y-plane, which is
polarized in the z-direction (figure 1). The symmetry axis is parallel to the polarization.
The upper surface of the particle is positively charged with the surface charge density
o(r) = pon - M(r) due to uncompensated dipoles, with the unit vector n perpendicular
to the surface and the magnetization vectorfield M (r). Hence, with this definition the unit
for the magnetic charge is V s and the magnetic dipole moment is measured in V s m. The
bottom charge is the mirror image of the positive charge distribution at the top of the particle.
To integrate (1) explicitly, we divide the surface into n identical triangles (figure 1). Then the
Qi are calculated by the sum over the triangles (0 < j < n — 1) of the top and the bottom
surfaces. As the charged surfaces are planar we replace the volume charge density p (r) and the
volume integration (1) by the surface charge density o (r) and an integration over the surface
element dS.

n—1
Qim = Z(deIU(T)IRzm(r) - /dSIO’(T)IRzm(r)) (6)
=0 Jjthtop-triangle Jjth bottom-triangle
Due to the symmetry of spherical harmonics
Yin(@.9) = (=) Yy (r — 6, 9) @)
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Table 1. The multipole moments Qy,, (in units of the surface charge density) up to the order
L =7 of a particle with fourfold symmetry. All Q;,, with even [ vanish.

! m=0 m = 4&b
1 2hd?
3 hd2<%7d2)

2 m must be zero or a multiple of 4.
501 = (D" Qj,, due to the symmetry of spherical harmonics.
¢ Hence, Q30 = 0 for i = +/2d, i.e. a cube.

the sum over the bottom triangles is incorporated into the first sum by the term (—1)/*"+!. The
azimuthal symmetry Y, (6, ¢) o exp(img) allows us to write

n—1
Qi = Z/dsa + (=)o (1) Ry (r)

j=0 Jjthtop-triangle

n—1 2
le _ /dS(l + (_1)l+m+1)|o.(,,.)|le(r)Zexp(im%j)

ne top-triangle j=0

= /dS (1+ (=D ) o ()| Rim (1)180 mod(m.m) (®)
one top-triangle
where the Kronecker § is unity for n|m or m = 0 only.

The symmetry properties of (8) lead to several conclusions. Multipole moments with
even [ exist for n > 3 only and no quadrupole moment (! = 2) is allowed. If [ is even
m must be odd. Except for m = 0, the smallest m is m = n as n must be a factor of m
because of the Kronecker §. Therefore, the lowest moment with / even is (I, m) = (4, 3) fora
threefold symmetry. The first possible multipole moment with even / for a fivefold symmetry
is (/,m) = (6,5). Additionally, all particles with even rotational symmetry do not possess
multipole moments with even /. This can be seen from the parity properties of ¥;,,(0, ¢)

PYin(0,9) :=Yin(m — 0,7 +9) = (=1)"Y,,(6, ¢). ©))

If the charge distribution has a negative parity (o (—r) = —o (7)), which is the case for a
particle with n even, the integration reduces to

Oim = / dS (1 + (=D"*Y]o () [ Rym(r) - 1 - 80.moden.n) (10)
one top-triangle
and / must be odd.

Tables 1 and 2 give the low order moments of a particle with fourfold and cylindrical
symmetry, respectively, as a function of the surface area (oc d?) and the height & of the particle.
As expected the dipole moments are proportional to d> x h. The dependence of the multipole
moments on the effective aspect ratio 2 /(v/2d) of a particle with fourfold symmetry is shown in
figure 2. The functions Q;,, (k, d) may cross zero. This happens for example for the octopole
moment of a cube [11] (see figure 2). In the limit of small thicknesses the octopole moment
reaches —25% of the dipole moment. This geometry corresponds to sizes of particles often used
in experimental studies [12—14]. For vertically elongated particles, such as arrays of magnetic
nanocolumns [15, 16] or liquid colloidal crystals with rod-like components [17], the magnitude
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B(1,1)

E(la,ls)

QlO

Ql m

[T -0.25] f

h/a = h/v/2d h/a

Figure 2. (a) The low order multipole moments Q;,, (normalized to Q;q) of particles with
fourfold symmetry with height /4 and edge length a. For i — 0 Q3¢ reaches —25% of Q.
(b) The low order multipole-multipole interaction energies E(l4, /) (normalized to the dipole—
dipole interaction energy E (1, 1)) of particles with fourfold symmetry with height /2 and edge length
a. The parameters of E(l4, [p) specify the multipole moments /4 and /p that interact (including
the sum over m 4 and mp).

Table 2. The multipole moments Q;,, (in units of the surface charge density) up to the order
L =7 of a particle with cylindric symmetry. All Q;,, with even [ vanish.

1 m = 0*

1 whd®

3 Zhd*(h* - 3d%)

5 f—6hd2(h4 — 10h%d? +10d*)

7 g—4hd2(h6 —21h*d? + 70hd* — 35d°)

2 m must be zero for symmetry reasons.

of the octopole moment exceeds that of the dipole moment. Thus, many experimental systems
require the consideration of higher order multipole moments while in the case of elongated
polarized objects the consideration of octopole moments is indispensable.

3. The energy contribution of multipole moments with order L > 1

Exact analytical solutions include implicitly all expansion terms. However, one cannot
distinguish between the contributions from different moments, i.e. it is impossible to assign the
formation of superstructures in an ensemble of particles to particular features of their geometry.
The calculation of the higher order multipole moments of a particle gives the possibility to
predict the behaviour induced by multipole terms solely from the knowledge of the single
particle and the array geometry. Thus, the use of higher order multipole moments is not meant
to substitute analytical solutions, but reveals a new, rather simple treatment to distinguish
symmetry effects due to single-particle properties on all length scales. The multipole moments
give an additional contribution to the magneto-static interaction. The exact interaction energy,
including all multipole terms, can be found in the literature, analytically solved for uniform
magnetized bodies with fourfold symmetry [18]. However, the expression for the potential is
very complicated and even more complex for the interaction energy.

Though the expansion of the potential of a charge distribution is straightforward, the
expansion of the interaction of two charge distributions requires a more complex derivation,
particularly in the case of intersecting charge distributions, which are included in the
sophisticated treatment of that problem [19]. The formulae given in [19], however, demand a
transformation of the coordinate system for each pair interaction. We focus on the most general
formulation for non-intersecting charge distributions [2] to obtain results that are independent
of the coordinate system.
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Table 3. Multipole—multipole interaction energies (in units of o2 (47 Ko 1) of two particles with
fourfold symmetry. The particles have an edge length a = ~/2d and height 4. The edges are
parallel to the coordinate axes and the distance vector between the particles is Rap = R - e,.
Every entry of the table represents an interaction of the moment jS with Q}Z . The index m is
omitted as the summation over m is carried out. As the table is symmetric, doubled entries are left
blank for clarity.

o 04 04
05 4n2d* _3h2d* (W = 2d%) h2d*(15h* — 100n%d* +28d%)
! R? 2R’ 32R’
08 25d* (h® — 2hd*)? _ 7h2d*(105h° — 910h*d* + 1692hd* — 584d°)
3 16R7 768R°
07 Thd* (567h® — 7560n°d> + 28776h*d* — 23840h%d® +93284%)

4096R"!

If R,p is the distance vector from charge distribution A with multipole moments Q* to
charge distribution B with multipole moments Q% the interaction energy is

1
Eap =
47 o Iy

> Titgmamy (Rap) 0L, OF ., (11)

Ipmamp

with the geometric interaction tensor 7j,,m ,m, (Rag) [1]

T[AleAmB (Rap) = (— 1)_18 IZ;+ZBMA+ITIB (Ras)

(Ua+lg —mg—mp)! (Ig+1lp+mp+mp)! (12)
(o —m)'lp —mp)! (g +ma)!Up+mp)!
The dependence on the distance is given by 1, ., ... (Rag). Hence, it follows from (12)

that the energy contribution from the moments Ql’z and Qf; of order /4 and [, respectively

decreases with increasing distance as R;g and A = [, +1p + 1. Consequently, higher order
multipole moments are importantif R 2> d. The infinite series converges to the exact solution.

The multipole—multipole interaction energies for two particles with square base of edge
length a and height # (edges parallel to the coordinate axes) with distance vector R4p = R-e,
have been calculated and are given in table 3. The multipole—multipole interaction energies
as a function of the particle aspect ratio and R = 1.2a are shown in figure 3. An interparticle
distance of R = 1.2a is in the range of experimental values (e.g. R = 1.la in [20] and
R = 1.4a in [21]). For small thickness & the dipole—octopole energy is about 26% and the
octopole—octopole interaction is close to 19% of the dipole—dipole energy. As the octopole
moment vanishes for a cube, the dipole—octopole interaction energy crosses zero at h/a = 1,
while the octopole—octopole interaction energy has its minimum value, i.e. zero. For vertically
elongated particles the multipole-multipole interactions are even stronger. The energy of
multipole-multipole interactions between two particles with fourfold symmetry as a function
of the interparticle distance R is presented in figure 3. One sees thatfor42/a = 0.4 and R = 2a
the pure dipolar approximation gives only 80% of the total energy. Obviously, for R < 2a
the octopole moment must be considered. For R < 1.2a the 2°-pole brings further important
energy corrections. Hence, our quantitative results can be directly applied to analyse the
magnetostatic interactions between square dots of the patterned Co7oCrgPt;, perpendicular

media [21].
The interaction energies that correspond to the geometry and material of [21] are calculated
in table 4. For R = 100 nm the interaction energy between two particles of size of

70 x 70 x 20 nm? due to the octopole moments is 17% of the dipole—dipole energy. For
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Eyot

octopole+dipole

25-polet-octopole+dipole

R/a = R/\2d

Figure 3. The sums of multipole-multipole energies up to order L = 1, 3, 5 normalized to the
total energy Ei as function of the interparticle distance R. The aspect ratio is h/a = 0.4.

Table 4. The temperature 7 of the multipole-multipole interaction energies E = kg7 of two
particles with fourfold symmetry, where kg is the Boltzmann constant. The particles have an edge
length @ = 70 nm and height 7 = 20 nm. The edges are parallel to the coordinate axes and the
distance vector between the particles is R4p = (100 nm)e,. Every entry in the table represents
an interaction of the moment QI/Z with Qi . The index m is omitted as the summation over m is

carried out. For comparison the energy of 1 /2M0M§ V/kg = 9.44 x 10° K, where V is the particle

volume and Mg = 4.60 x 10> A m~!. The numbers in brackets correspond to the values for an
infinite square lattice. As the table is symmetric, doubled entries are left blank for clarity.

of o 04
0% 14719K (133 x 10°K) 2484 K (0.13 x 10°K) 84 K (369 K)
0% 1165 K (5150 K) 164 K (685 K)
o 140 K (572 K)

an infinite square lattice the octopolar energy per particle exceeds 13.5% of the dipolar one.
The decrease of the octopolar contribution to the total magnetostatic energy density is due to
the faster drop of its strength with the distance. Indeed, the dipolar lattice sum for a square
lattice is (1,0, 1; 3/2) = 48(3/2)¢(3/2) ~ 9.034,! i.e. in an infinite lattice the field on one
lattice site is approximately nine times the field due to one nearest neighbour while for the
dipole—octopole interaction the factor is S(1, 0, 1; 5/2) ~ 5.01; this equals 56% of the factor
for the dipolar interaction. Nevertheless, even a 13.5% effect may significantly change critical
properties of an array. For example, a critical temperature 7, at which an array becomes ordered
due to dipolar plus octopolar interactions will increase by ~13.5% comparably to a pure dipolar
case. Hence, in order to allow for independent particle switching for the perpendicular memory
applications one should increase R beyond 100 nm.

In the case of the system from [21] the dipolar interaction alone can induce a long-range
orderin the array for R < 150 nm as the strength of the dipole—dipole coupling £ (1, 1) exceeds
room temperature (see table 4). A more interesting situation arises for the case of dots with
smaller dimensions 30 x 30 x 4 nm?. In this case the dipole moments of dots decrease and a
long-range dipolar ordering cannot be stabilized in an array even for very small interparticle
distance of R = 40 nm (E(1,1) < 300 K). The octopole—octopole and dipole—octopole
contributions increase the total magnetostatic energy by ~30% so that the total magnetostatic
energy increases to almost 400 K. This is well above the room temperature. Hence, in a certain
temperature range a long-range magnetic order in that case can be established. In contrast to
the previous situation, however, it is only ensured via higher order magnetostatic contributions.

! Where S(a,b,c;s) = Y ; j(aiz +bij +cj*) ™ excluding i = j = 0 and B(z) and ¢(z) are the Dirichlet beta
function and the Riemann zeta function, respectively [22].
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Table 5. The same as in table 4, but for particles with an edge length ¢ = 8 nm and height
h = 2 nm. The distance vector between the particles is Rap = (9 nm)e,. In this case the
self-energy is 1/2/10M3V / kg = 1233 K.

of 04 03
08 344K(3112K) 9.6K@487K) 07K (29K)
08 74K (32.7K) 19K (7.8K)
08 24K (9.9K)

The third interesting situation arises when the particles have dimensions within the
superparamagnetic regime, e.g. 8 x 8 x 2 nm? for a material with a weak magnetocrystalline
anisotropy. Magnetic moments in those dots are strongly coupled by the exchange interaction
and can still be described as magnetized objects. In contrast to the previous situation, however,
the anisotropy energy per particle is also comparable with the room temperature and the dots
are dynamically unstable. The dipolar energy is comparable with the room temperature (see
table 5) as in the previous case. The octopole—octopole and dipole—octopole contributions
increase the total magnetostatic energy in an infinite square lattice with period of R = 9 nm by
~26%. Hence, the multipole-multipole interactions may bring the thermal stability into the
system even in the superparamagnetic regime. This result is in accordance with a recent
experimental study [23] on close-packed Co, NiFe and CoFe/Cu/NiFe magnetic particle
arrays where a stabilization of magnetic configuration against superparamagnetism for small
interparticle distances has been found.

Hence, higher order multipolar terms must be considered in systems of two particles as
well as infinite lattices if the distance between the particles is of the same order of magnitude
as their diameter (R 2 d). Calculations of higher order magnetostatic contributions for many
experimental situations can be easily made on the basis of table 3.

4. Summary

In conclusion we have developed a procedure to calculate the multipole moments up to
any desired order as well as the correlated interaction energies of axially polarized prism-
shaped particles including cylinders. The theory is scale invariant, but as we treat single-
domain particles, it is of special interest in the nanoscale regime. We demonstrate that
prismatic particles with mirror symmetry do not posses multipole moments of even symmetry
(quadrupoles etc). Only the moments of odd symmetry (octopole etc) exist. Depending
on the geometry and the interparticle distance, the higher order moments can exceed the
dipole moment. Therefore, their contribution to the total energy of an array must be
included in the case of close packed nanoparticles and the treatment solely by the dipole—
dipole approximation is questionable. Higher order contributions may appear as additional
anisotropies and cause anisotropy induced orientational order in colloids or liquid crystals. A
shift of the superparamagnetic/super(anti)ferromagnetic transition might also be possible due
to higher order multipole moments. This will be the subject of future investigations.
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Multipole moments of in-plane magnetized disks
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The multipole moments of in-plane magnetized disks have been calculated based on the
fundamental theory of magnetostatics. Analytical solutions for disks with uniform magnetization or

an onion state are given explicitly. It is demonstrated that depending on the polarization

configuration, higher-order multipole moments beyond the dipole moment appear. The strength of
the multipole moments can be of the same order of magnitude as the dipolar moment. The
higher-order moments give rise to an additional energy contribution in arrays of close-packed
polarized disks. €005 American Institute of PhysidDOIl: 10.1063/1.1847351

I. INTRODUCTION face charge distribution. The multipole expansion cai

ade either in cartesian or in spherical coordinates. The
esian expansion is more popular as only real number
reguired. However, each term of the expansion is a te

Physical properties of magnetic dot arrays are importan
from both fundamental and practical points of view as min-
iaturization gives access to new phenomena that can be us e orderl of the tensor is equivalent to the order of
in technical applications. Because of the vanishing interdogx

; ; : pansion. The number of independent tensor compone

exchange coupling magnetic properties of the arrays are gov- ) . - : .
L . a three-dimensional symmetric tensor increases witk
erned by the magnetostatic interaction and the magnetocrys- . R :
talline anisotropy. Magnetic memory applications require an o< off; thus, it is a formidable task to treat terms
py. Mag y app d rank higher than twdquadrupole momentsThe spherice

increase in the density of dots per unit area, which is corre- xpansion needs complex numbers but its complexity

lated with a decrease of dot sizes and interdot distances. With : )
. ] : . : .not change with the order of expansion as the numb
increasing density of packing higher-order magnetostatic ) .

L ; . .~ Independent components is proportional td@herefore, wi
terms due to the finite dot size may become increasingl

. B Yise spherical coordinates as almost any order can be
important. The multipolar moments, however, have not been . o

; . : L lated within reasonable effort and the symmetry is ei
studied systematically. There are only few investigations on

YA A f ; verified due to the well-known properties of spherical
that subjecll. In those studies a leading multipolar correc- monics(see beloy

tion to the dipolar interaction has been calculated for uni- The multipole moments of a charge distributipff) in
formly magnetizeti** and double-domain dofswhile the : pole mon Aacharg o
0%pherlcal coordinates=(r, 6, ¢) is defined b§

strength and the order of further multipole moments have n

been determined and noncollinear magnetic configurations

have not been considered. Qim :j dVp(F)Rm(F), (1)
In the present investigation we derive a formalism that v

enables the calculation of multipole moments for magnetized . L

disks of finite size. Uniformly magnetized particles and non-Where the lntegr’;ltlon Is performed over the-volumehal

uniform onion magnetization configuratinwith different enclosesy(F), weighted by a regular normalized spher

degrees of inhomogeneity have been considered. We demon‘:j“'mon'CR““'6

strate that both the uniform and the onion in-plane magneti- i

zation configurations lead to strong multipole moments in R _(F) = v/ ——r'Y,,(6,¢). 2)
ultrathin disks. The first nonvanishing multipolar terms are 2+1

octopolar, while all even momentincluding quadrupolar
are extinct. For both states the higher-order moments can .
of the same order of magnitude as the dipolar one. Hencé-f’f orthogonal functions on the sphéré’.hey also have tr

they can influence the switching behavior of magnetic parproperties of a tensor in spherical coordinates of ofdeith

ticle ensembles and must be considered in the description &Hl mdep_endent Components. To ensure the uniquen:
ordering phenomena in close-packed arrays the expansion, the origin of the coordinate system mus
' incide with the center of charge

b‘léhe spherical harmonic¥,(#, ¢) represent a complete ¢

II. MULTIPOLE MOMENTS OF CHARGED dVF ()|
OR POLARIZED PARTICLES Ml oY
fo=—0, 3
To derive the multipole moments of a magnetized disk s R ®

we calculate the multipole expansion of a corresponding sur- VdV|p(r)\

@Electronic mail: vedmedenko@physnet.uni-hamburg.de i.e., rg=0.
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Z TABLE I. The multipole moment§2,1m (in units of the surface charge d¢
sity) up to the ordet=7 of a disk with uniform in-plane magnetization. .
Qn with evenl vanish.

m=-12P
y =1 Fmhid
1=3 Ssmhrd(h?-3rd)
- 3
I=5 o mhri(h®=10rgh?+10r)
FIG. 1. Scheme of a disk within they plane(magnetized irx direction. 1=7 ﬁﬂhrg(hs_zmﬁ@ 70n2r8-35r9)

Due to the magnetization a magnetic surface charge emepyestive
charge® and negative charge). In case of a uniform magnetization the °Only \mLzl is allowed.
charge is cosine distributed. bQ,lz—Q|_1 due to the symmetry of spherical harmonics.

h 2m
P — 2
lll. MULTIPOLE MOMENTS OF IN-PLANE le‘MOMSf_D dzfo fode
2

MAGNETIZED DISKS
- z
x{coé’ ¢[R|m(\r§+ zz,g - arctar’rr,go)”. (4)
0

Let us assume a disk with a radiyg a heighth, and a
base coplanar to they plane. The disk is magnetized in the . ) . ) )
x direction (Fig. 1). The center of mass and the center O](The integral in Eq(4) has polynomial solutions for all int

charge are identical and coincide with the origin of the co3¢'P |nclud|n_g p_=1 for “.’?'fo”“ magnetization. For nonu
ordinate system. Thus, thez plane is a symmetry plane form magnetization additional volume charge appears. t

) - : > . = ever, this volume charge distribution can be treated witt

with positive parity while they-z plane has negative parity, same mathematical procedure and is, therefore, not cc

i.e., after a mirror operation with respect to this plane thegred in the following.

charge must be multiplied by -1 to reproduce the initial ~ As the charge distribution of an onion state full

state. p(=F)=-p(F) and thex-y plane is a mirror plane with pos
The surface charge is proportional to the saturation magtive parity, Eq.(4) can be modified to

netization Mg and depends on the magnetic state of the

sample. An expression for the charge distributjgn) of a =M gd 3 dol 1 1 1
uniformly magnetized diskFig. 1) is very complicated in Qim = #oMs o z) ", Tode 1-CDIL-=D7
spherical coordinates, but due to the natural symmetry of a 2

disk it is trivially proportlona.l to cog in cylln.drlc_al coordi wcod <PR|m< W(z)Tzz’I _ arctar‘r,cp) ) (5)
nates. Furthermore, the cosine charge distribution can be eas- 2 ro

ily generalized for nonuniform onion states as the charge

distribution can be expanded likgr) = =,c, co® ¢ with ex-  The modification utilizes the parity properties (6, ¢)
pansion coefficientg,. Due to the symmetry of the onion

configuration only an odd integgr appear. The nonunifor- |5Y|m(9, @) =Ym(m= 0,7+ ¢) = (- D)"Y, (6,0). (6)
mity of the magnetization increases with increaspgex-

pressing the volume element and normalized spherical hagrom Eq.(5) it directly follows that only odd integers &
monics of Eq.(1) in the cylindrical coordinates, one obtains allowed forl andm. Due to the azimuthal symmetry of t
the following integral: spherical harmonics,

TABLE Il. The multipole moment:Qf’m (in units of the surface charge densityp to the ordet=7 of a disk
with an onion state. The surface charge disribution can be describptphy uoMscos . All Qp, with even
| and everm vanish.

m=-1° m=-3 m=-5°
I=1 §Emhg
1=3 2 L mhri(h?-3rd) 85 hrd
1=5 S frhr(h®-102he+ 10r) 838 hrd(3r2-2h?) 3\7/ 256mhr
1=7 S s mhra(ho-20nr 2+ 70Nr - 355) $2L ohird(h® - 5h2r3+ 3rd) ZLohr(r3-h?)

|_m=(—1)r"Q|'m due to the symmetry of spherical harmonies.
=5 is the largest possible value.
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%0 05 L0 all in this study. However, as the influence of higher-o
------- -~ moments quickly increases with decreasing interparticle
S.o tance the common action of the dipolar and the multig
“gz:o, s interactions may overcome the thermal fluctuations anc
S 5 e plain the experimentally found long-range superferror
netic order in magnetic arrays. Hence, further investigi

4)_5.’_/‘_’_’/ of the magnetic ordering in magnetostatically coupled ai

with multipole interactions is highly desirable.

FIG. 2. The multipole moments in units of the dipolar moment of the in- IV. SUMMARY
plane magnetized disks with heightand radius,. Magnetization configu- . .
ration is a nonuniform onion state. In conclusion we have developed a formalism to ce

late the multipole moments of in-plane polarized disks L

any desired order. The use of higher-order multipole
(7) : . ) ;

ments is not meant to substitute analytical solutions, bt
only |m/<p are allowed, as the set of trigonometric func- veals a new, rather simple treatment to distinguish symr
tions is orthogonal. effects due to single particle properties on all length sc

Table | gives the low-order moments of a disk with a The theory is scale invariant, but as we treat uniform

uniform magnetization as a function of the surface areaonuniform magnetization configurations, it is of specia
(«r) and the heighb. As expected, the dipole mome@t_;  terest in the nanoscale regime. Depending on the aspec
of a uniformly magnetized disk is proportional to the surfaceand the micromagnetic state of the magnetized disk
charge(x=rox h) and to the distance between positive andhigher-order moments can be of order of the dipole mor
negative charge§ ). Higher-order multipole moments pos- Therefore, their contribution to the total energy of an a
sess further polynomial factors dependingrgrandh. The  must be considered for close-packed disks and the trea
multipole moments for an onion configuration of the strengthsolely by the dipole-dipole approximation is questions
p=>5 are listed in Table Il. From the comparison of Tables IDue to the symmetry properties higher-order multipole
and Il it can be seen that the dipole moment of an onion stattents can cause additional anisotropies and anisot
is slightly lower than that of a uniformly magnetized mon- induced orientational order. As the interaction energy it
odomain. This is due to the decreasing amount of surfaciuenced by corrections beyond the dipole approximatiol
charge with increasing. The strength of the higher-order results are important for the thermal stability close to
moments as a function of the aspect ratioy for p=5is  superparamagnetic limit.
shown in Fig. 2. Forh=r, the multipolar moments are
smaller than the dipolar one. However, in the limit of small
thicknessh<r) the octopole momer®5; reaches —-61% of ACKNOWLEDGMENT
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The low-temperature stable states and the magnetization reversal of realistic two-dimensional nano-
arrays with higher-order magnetostatic interactions are studied theoretically. For a general calculus of the
multipole-multipole interaction energy we introduce a Hamiltonian in spherical coordinates into the
Monte Carlo scheme. We demonstrate that higher-order interactions considerably change the dipolar
ground states of in-plane magnetized arrays favoring collinear configurations. The multipolar interactions
lead to enhancement or decrease of the coercivity in arrays with in-plane or out-of-plane magnetization.

DOI: 10.1103/PhysRevLett.95.207202

Magnetic properties of artificially structured and self-
organized magnetic media belong to the central questions
of nanomagnetism as they give access to new phenomena
that can be used in technology [1-3]. Magnetic memory
applications require the increase of the density of dots per
unit area, which is correlated with a decrease of dot di-
ameter d and interdot distances R. Particles with lateral
size smaller than the characteristic exchange length d <
Xex have a single domain magnetization configuration with
a macroscopic magnetic moment. In densely packed sys-
tems these moments interact. The magnetostatic inter-
action is a crucial parameter as it determines the magneti-
zation reversal. To identify the effects of the long-range
interaction on magnetic behavior extensive experimental
[2,4-9] and theoretical [10—12] studies of magnetic nano-
arrays have been performed.

Experimental investigations show that in comparison
with an infinite film, the interparticle interactions usually
lead to a decrease of the switching field in patterned media
with out-of-plane magnetization |2,5,7] and to an increase
of the coercivity for in-plane magnetized particles
[5,6.8,13]. Although in some cases an agreement of switch-
ing behavior with theoretical predictions has been ob-
tained, it is often found that measured switching fields
deviate significantly (10%—15%) from those expected
from pure dipolar interactions ([5-7,9] and the references
therein). The theory predicts a noncollinear antiferromag-
netic ground state and weak coercivity for a square lattice,
which comes close to the ideal situation of in-plane dipoles
with zero in-plane self-coercivity [14,15], while experi-
ments [6,13] reveal that patterning of a continuous film
increases the coercivity considerably, e.g., uoH, goes from
almost zero up to 22.8 mT for Co and 16 mT for NiFe
arrays [6,13]. In addition, collinear magnetic superdomains
in dense nanoarrays have been observed [16] instead of a
noncollinear structure. In a triangular in-plane array a
frustrated ferromagnetic state with closed loops and spirals
has been predicted [11]. In the experiment, however, the
vorticity was not observed and the coercivity exceeded that
expected from the dipolar approximation [6,13]. A related
nonsolved problem is the so-called superferromagnetism in
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two-dimensional nanoislands assemblies. Experimentally
found superferromagnetic domains [9,17] lead to high
coercivity, which is inconsistent with the strength of the
dipolar coupling and the absence of the direct exchange
interactions [9].

The quantitative disagreement between theory and ex-
periment has been attributed to a variety of reasons as
pinning of magnetization by structural inhomogenei-
ties [6] or noncoherent rotation of magnetization [5,7].
Several investigations have been devoted to the question
of how the dipolar interaction between the monodomain
particles is modified by their finite size, i.e., the leading
correction terms to the dipolar interaction have been de-
termined [10,12]. The main conclusion is that the correc-
tion term reinforces the antiferromagnetic character of the
ground state in a square and the ferromagnetic one in a
triangular lattice. An increase in coercivity of the in-plane
systems still cannot be quantitatively explained in the
framework of those studies.

Recently, we have calculated explicitly the multipolar
(MP) magnetic moments of uniformly and nonuniformly
(e.g., onion state) magnetized objects of different sym-
metry [18,19]. It has been demonstrated that rotationally
symmetric particles possess octopolar (Q3) and dotria-
contapolar (Qs) moments, which can be comparable with
the dipolar one (Q;) for elongated (e.g., nanowires) or
ultrathin (e.g., nanodiscs) geometry. The calculation of
interaction energies between a pair of particles with multi-
pole moments show, in agreement with [10,12], that the
higher-order interactions reinforce the dipolar ones.
However, in many-body systems the situation is much
more complicated. As it is known from chemistry [20—
22] the multipolar interactions may completely change
the structure and physical properties of an ensemble.
Hence, to make a reliable conclusion about the influ-
ence of multipolar interactions on switching behavior sta-
ble low-temperature multipolar states have to be calcu-
lated. So far, multipolar configurations in magnetic
nanoarrays have not been considered despite the small
interparticle distances and strong MP moments of the
dots or grains.

© 2005 The American Physical Society

159



160

PRL 95, 207202 (2005)

PHYSICAL REVIEW LETTERS

8. Papers on Dipolar and Multipolar Systems

week ending
11 NOVEMBER 2005

Few existing calculations of stable MP configurations in
physical systems (mainly gas adsorbates) have been usu-
ally made within the mean field or Monte Carlo (MC)
approach in Cartesian coordinates [22,23]. We use spheri-
cal coordinates, as this allows a much easier treatment of
higher-order moments and their interaction energies [see
Eq. (1) below]. For example, the dotriacontapole has com-
ponents Qs,, with —5 =< m = 5 in spherical coordinates
while it would be a tensor of the form Dy, with
(i, kI, m) € {x,y,z} in Cartesian coordinates. Even
though the number of independent tensor components is
the same, it is a formidable task to calculate all components
of Djju, or even higher-order moments. Therefore, the
technique, well established in chemical physics, of spheri-
cal coordinates is used to calculate the Coulomb interac-
tion energy between (wo nonintersecting charge
distributions |21,24]. A nanoarray is nothing but an en-
semble of magnetic multipolar rotators on a lattice and can
be described by the extension of this approach onto a
many-body MP system.

In this study we introduce the Hamiltonian in spherical
coordinates into the conventional MC scheme and derive

the stable low-temperature configurations of magnetization
|

TlAleAmB(EAB) = (=1 7A+15mA+mH(§AB)\/

where the dependency on the distance is given by the
complex conjugate of the irregular normalized spherical
harmonic function

47 Yin(6, @)

Ly (F) = 2+ 1 A 3

H, is the only nonvanishing component of an external
uniform magnetic field of the form H=(H,.0,0).
Two-dimensional films of multipoles or their combina-
tions corresponding to particles of different geometry on a
lattice have been considered. In this study we restrict
ourselves to rotationally symmetric multipoles with dipo-
lar and octopolar contributions (e.g., Q3p or Q3 + Q1p)-
Rotated moments have components with m # 0. In the
following, the description Q;, means that there exists a
coordinate system in which the moments can be repre-
sented by Q. The weak dotriacontapolar interaction is
not presented here as octopolar and dotriacontapolar inter-
actions break the isotropic behavior of dipoles on square
and triangular lattices in the same way and the symmetry of
the stable magnetic state remains unchanged. Our aim is to
give a reasonable theoretical description of finite arrays.
For that reason and in order to avoid symmetry adapted
structures we use open boundary conditions. Lattice sizes
up to 60 X 60 have been used. To prevent artificial effects
we used no cutoff. A standard MC technique was used [3].
The rotational space was sampled uniformly and was not
restricted, i.e., a moment can try any new angle. An ex-

as well as hysteretic properties of magnetic nanoarrays. It
will be demonstrated that for in-plane systems multipolar
interactions select collinear configurations from the dipolar
manifold. In patterned media with combined dipolar and
octopolar moments a competition between dipole-octopole
and dipole-dipole plus octopole-octopole interactions leads
to the increase of the coercivity. In out-of-plane systems
the higher-order interactions do not change zero-field con-
figurations. However, the multipolar contributions enlarge
the interaction field by 10%—-15% and, thus, decrease the
switching field.
The Hamiltonian of the interaction reads

1 >
— A B
H= 47TM0 ; TlAleAmB(RAB)QlAmA Izmg
Iylgmamp
1
+> =H (0} — o)), 1)
;ﬁ 11 1-1

where Q7 and QF  are the moments of multipoles A
and B expressed in spherical harmonics [18] and
Ty, 1pm AmB(ﬁAB) is the geometric interaction tensor depend-
ing on the interparticle distance vector I-Q)A 3 [21] between

multipoles on sites A and B:

(g +1g —my —

mp)! (Iy + Ig + my + mp)!

(Ia = m)WIy — mp)! (L + ma)!(ly + my)!

@

\
tremely slow annealing procedure has been applied. To

avoid metastable states we have performed two different
simulations of the same system simultaneously starting
them at different “seeds” for the random number generator
to ensure that the samples take different path to the equi-
librium. Only when both samples reached the same stable
energy level it has been deduced that the system has
reached equilibrium. The high in-plane coercivity is typi-
cally found in assemblies of single domain nanoparticles
with a height-to-diameter ratio 2/d < 0.5[6,3,9,13]. Such
particles possess dipole and octopole moments with
030/0Q10 = 0.5 [19]. We have calculated stable configura-
tions for pure octopoles and combined multipoles with 0 =
030/Q1p = 3.0. The octopolar moments are unidirec-
tional, i.e., they can be represented as vectors. We find
that on the square lattice, octopoles form lines aligned
antiparallel while on the triangular lattice the moments
are ferromagnetically ordered. Hence, the octopolar inter-
action on a triangular and a square lattice introduces an
easy-plane and a tri- and a biaxial in-plane anisotropy,
respectively. In contrast to finite dipolar systems avoiding
uncompensated poles by domain formation, a finite octo-
polar system is not sensitive to the formation of free poles
in most geometries as octopoles do not interact with a field
but with the field curvature. Therefore the low-temperature
configurations in finite samples are still parallel lines for a
triangular lattice and antiparallel lines for a square lattice.

With increasing dipolar interaction the pattern changes.
A typical low-temperature configuration consists of alter-
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nating regions of uniaxial parallel and antiparallel lines
such as in Fig. 1(b). On a square lattice the width of regions
with parallel lines is usually 2—3 lattice parameters. In =~
10% of calculations despite a very long relaxation super-
domains [Fig. 1(f)] appear. The energy of ideal and MC
configurations as a function of Qsy/Qyq is plotted in
Fig. 2(a). Figure 2(b) gives the size dependence of all
energy contributions for parallel lines. We find that the
dipole-octopole energy contribution (Ey_) is minimal for
the parallel while maximal for the antiparallel lines. The
dipole-dipole (E4_4) and octopole-octopole (E, ) inter-
actions, in contrast, prefer antiparallel lines. Therefore for
sample sizes L < 9 and 0.25 < Q1y/ Q10 < 0.8 the state of
coexisting parallel and antiparallel lines has the lowest
total internal energy. For L > 9 the antiparallel lines are
preferable for all Q5,/Q4 as the long-range dipolar con-
tribution increases. The energy difference between anti-
parallel lines and coexisting phases or superdomains 6F
grows with increasing Qso/Q¢ [Fig. 2(a)]. However, for
0 < Q30/Q1p <0.6 SE is very small (=2%), while the
configurational entropy in a system of parallel or antipar-
allel lines drastically increases with the system size S. =
kIn(2 X 2%). As the entropy increases boundless with L,
in contrast to the slow convergence of the dipolar sum,
the free energy of the coexistence is lower for nonzero
temperatures.

Formation of superdomains gives an additional contri-
bution to the entropy. The size of superdomains in finite
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FIG. 1 (color online). Hysteresis loops for a 20 X 20 square
nanoarray with Q39 =0.5Q;9 and a pure dipolar system
[inset (d)]. The magnetic field is applied in the x direction.
Insets (a)—(c) give a part of the intermediate magnetic configu-
rations; (f) and (e) show stable zero-field configurations for
combined multipoles and the pure dipolar case, respectively.

Thermal energy is k7 = 0.6E). The field is expressed in %

with uy—the permeability of free space and Vi, — the volume of
a dot.

dipolar systems is driven by the pole avoidance principle.
While the energy cost due to the wall formation increases
only linearly with the domain size, the gain in the long-
range dipolar interaction increases with the square of the
domain size and only a rare formation of superdomains is
observed at low temperatures. The additional entropy for
large superdomains is small. Approaching 7', the domain
size decreases, the corresponding entropy increases and the
superdomains appear more frequently. This finding is in
accordance with the experiment [16] giving evidence for
formation of the large in-plane collinear domains extend-
ing across several dots. At zero temperature the antiparallel
lines are preferable.

We have calculated the specific heat C,,(7, L), the order
parameter ¢, and the susceptibility x, (7, L) for different L
and Qs,/ Q1. Using 8 = (kT) ', C,(T, L) and Xq(T, L)
are deduced applying the fluctuation-dissipation theorem
C, = kB(E*) —(EY) and  x, = BE|((g*) — (@)
Figure 3 shows the thermodynamic characteristics in
the case of a system with Q3,/Q;o = 0.5. We use g =
N71|nx — nyl, where N = n, + n, is the total number of
moments and 7,, 7, number of moments aligned with X or
Y directions [15]. All systems show maxima of specific
heat and susceptibility at the same temperature confirming
the existence of a phase transition. In the following it will
be demonstrated that higher-order interactions signifi-
cantly influence magnetization reversal in nanoarrays.

The field dependence of magnetization in square and
triangular arrays of dots with in-plane magnetization and
0 =< Q3,/Q1p =1 has been calculated. A pure dipolar
system does not show any easy-axis hysteresis. In a multi-
polar array, on the contrary, the hysteresis loop is quite
open. The squareness s depends on the composition, the
strength of multipoles and on the temperature. Figure 1
shows the magnetization reversal of a square lattice with
030/019 = 0.5 corresponding to an array of ultrathin par-
ticles with #/d = 0.5 [19] and for a pure dipolar system
[A/d = 1, Fig. 1(d)]. The field is scaled with the pair in-
teraction energy E) between two dots magnetized mutually
parallel but perpendicular to the bond Ej « 1/ Ri{‘; bl
therefore, contributions from moments of different order
in combined multipoles scale differently with R,;. All

A g = A g o ('« ) Dipole-Dipole
vig @ N Vi é — ('« ) Octopole-Octopole
-0.54_ paralle] lines RS \ - - (a) Dipole-Octopole
. ™ -0.5
—- Superdomains -3\
- - Phase of coexistence‘-\"\\_ Mennnan . . .

.
V ®eocee o . .
~

-1.04--- Antiparallel lines Y10
00 05 10

15030010 0 50 100

FIG. 2 (color online). (a) Internal energy of ideal parallel, anti-
parallel, coexisting, and superdomain configurations for L = 20
as a function of Q3y/ Q0 on a square lattice; (b) Size dependence
of different contributions of the magnetostatic energy for parallel
and antiparallel lines (scatter) for Qsy/Q;¢ = 0.5.
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FIG. 3 (color online). MC results for the order parameter (a),
specific heat (b), and susceptibility (c) of a system with
030/0Q19 = 0.5 on a square lattice.

values are given for Q3 = 1, Q; =2 and R,z = 1. This
gives s = 0.5 and H uoMsVp =~ 0.7E). By calculating
E) this result can be scaled to a square array of any mate-
rial with any interdot distance. For example, for an ar-
ray of permalloy particles at room temperature (Mg =
80X 10° A/m and vanishing anisotropy, K, <
1000 J/m?*) with A =20nm, d =70 nm, and R =
100 nm we find puoH. = 20 mT. Magnetic moments do
not rotate continuously as in a pure dipolar system but are
reoriented line by line [Figs. 1(a)-1(c)] as noncollinear
configurations are energetically unfavorable. From our
calculations it follows that the competition between the
Ey_,and Ey_4 + E,_, interaction energy plays an impor-
tant role for the magnetization reversal. As has been al-
ready demonstrated in Fig. 2(a) the total energy of the
configuration Fig. 1(b) is close or even lower than that of
Fig. 1(c), where all chains are antiparallel. Hence, to go
from configuration Fig. 1(b) to the configuration Fig. 1(c),
an external magnetic field has to be applied and the hys-
teresis appears. H, increases with decreasing temperature.
'This effect is similar to the superparamagnetic temperature
assisted switching. Thus, the hysteretic behavior is prede-
fined by the competition between the octopole-dipole con-
tribution of the magnetostatic energy and its dipole-dipole
and octopole-octopole counterparts. Pure dipolar systems
do not show any significant hysteresis.

On a triangular lattice H, increases by =~10% compared
to the pure dipolar system in good accordance with experi-
ments [6]. The increase is due to the support of the ferro-
magnetic single domain state by all interactions. For
assemblies of single domain nanoparticles with out-of-
plane magnetization |7] multipolar contributions do not
change the ground states of a dipolar system (checkerboard
pattern on a square and labyrinthine structure on a trian-
gular lattice). They give, however, an additional energetic
contribution promoting the magnetization reversal. Thus,
one of the main reasons for increase (decrease) of coerciv-
ity in the in-plane (out-of-plane) magnetic nanoarrays are
multipolar energetic contributions. In addition, the
octopole-dipole interaction between magnetic grains of
ultrathin geometry with in-plane magnetization might ex-
plain the origin and stability of superferromagnetic do-
mains in magnetostatically coupled nanosystems [9,17].

In conclusion, systematic investigation of multipolar
low-temperature stable configurations on a triangular

and a square lattice have been carried out theoretically.
In contrast to previous results we demonstrate that the
MP-MP interactions change considerably stable low-
temperature dipolar states. The dipole-octopole interaction
is an important component that might also explain the
superferromagnetic behavior in dense grain magnetic
materials and magnetic arrays. Tuning the multipole mo-
ments by changing the geometry of nanoparticles offers a
new route to the control of the coupling behavior and
therefore the hysteretic properties of magnetic nanoparticle

arrays.

Financial support from the Interdisciplinary Nano-
science Center Hamburg (INCH) is gratefully
acknowledged.
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The stable magnetization configurations of a ferromagnet on a quasiperiodic tiling have been derived
theoretically. The magnetization configuration is investigated as a function of the ratio of the exchange
to the dipolar energy. The exchange coupling is assumed to decrease exponentially with the distance
between magnetic moments. It is demonstrated that for a weak exchange interaction the new structure,
the quasiferromagnetic decagonal configuration, corresponds to the minimum of the free energy. The
decagonal state represents a new class of frustrated systems where the degenerated ground state is
aperiodic and consists of two parts: ordered decagon rings and disordered spin-glass-like phase inside

the decagons.

DOI: 10.1103/PhysRevLett.90.137203

There is currently a broad interest in the understand-
ing of the magnetism of ultrathin magnetic structures
due to the wide variety of industrial applications [1].
The discovery of the rare-earth-based quasicrystals [2]
offers the unique opportunity to study the magnetic be-
havior of localized magnetic moments in magnets with
nonperiodic structure. The combination of the structural
quasiperiodicity with magnetic properties of ultrathin
films can lead to new physical phenomena. Hence, the
understanding of the micromagnetic ordering in such
objects is of high significance for the fundamental
physics of magnetic materials as well as for technological
applications.

The critical behavior of localized magnetic moments
on quasiperiodic tilings has been investigated theoreti-
cally [3]. In those studies emphasis has been put on
critical exponents and transition temperatures of Ising,
Potts, and XY models. In the investigations only the
short-range exchange interaction has been taken into
account. The long-range dipolar forces were not consid-
ered. On the other hand, due to the long-range character, a
relatively weak dipolar interaction can compete with the
strong but short-range exchange coupling [4]. The com-
petition can lead to a variety of magnetic configurations
in two-dimensional films [4]. In quasiperiodic magnets
the magnetic pattern will be different from that of peri-
odic crystals and disordered media.

The quasicrystals can be structurally ranked between
the periodic lattices and completely disordered media. In
contrast to periodic crystals, in quasicrystals the number
of nearest neighbors varies widely from one point to
another as in disordered matter. The Penrose tiling |5],
for example, has atoms with coordination number chang-
ing from 3 to 7. Hence, the energy per magnetic moment
also varies. Unlike the disordered media, however, this
variation exhibits a long-range orientational order, i.e.,
any finite section of a quasicrystal is reproduced within a
certain distance. In particular, fivefold symmetry, forbid-

137203-1 0031-9007/03/90(13)/137203(4)$20.00
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den in conventional crystallography, can be observed in
the diffraction patterns. Thus, the magnetic ordering in
quasicrystals should be different from the collinear mag-
netism of periodic crystals and from spin-glass-like be-
havior of the disordered media.

The dipolar system on a Penrose tiling is geometrically
frustrated; i.e., magnetic moments are unable to find an
orientation satisfying the interactions with all neighbors.
The frustration in quasicrystals is different from that of
periodic systems and that of disordered media. In highly
ordered magnets the frustration is uniform, i.e., equal for
all lattice points. In disordered materials the frustration is
random. In quasicrystals the change in coordination num-
ber leads to spatial alternation of the dipolar energy and,
thus, the degree of frustration. However, the nonuniform
magnetic frustration is not random. The nonuniform geo-
metrical frustration is the second important ingredi-
ent for the definition of the magnetic microstructure in
quasicrystals.

The exchange coupling in quasicrystals is also differ-
ent from that of their periodic counterparts. Atoms on
quasiperiodic tilings have not only a varying number of
neighbors but also several different nearest neighbor dis-
tances (Fig. 1). Accordingly, there are several different
values of the exchange force which can even change sign.
The existence of several exchange constants J can also
exert a significant influence on the microstructure of the
quasiperiodic magnets.

In summary, it is obvious that the varying number
of nearest neighbors, nonisotropic magnetic frustration,
and varying J-constants are important for the micromag-
netic ordering in quasiperiodic ultrathin films. From the
theoretical point of view no general approach has been
made up to now.

The aim of the present study is to achieve a general
spatially resolved description of the magnetic ordering
on the Penrose two-dimensional tiling. Since the Pen-
rose tiling is aperiodic, an analytical description of the

© 2003 The American Physical Society 137203-1
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FIG. 1. (a) A section of the Penrose tiling. The original
Penrose rhombic tiles and the decagonal tiles are indicated.
Two allowed overlapping of decagonal clusters are shown as A
and B. (b) The original Penrose rhombic tiles. Five nearest
neighbor distances (the sides and the diagonals of the rhom-
buses) and their lengths are given. 7 is the golden mean. The
two strongest exchange bonds according to two shortest nearest
neighbor distances are denoted as J and J'.

micromagnetic structure is hardly feasible. Therefore
Monte Carlo simulations have been performed to find
the equilibrium spin configurations at a given tempera-
ture. We present as well an original experimental dipolar
system made of 309 small magnets on the Penrose tiling.
In the Monte Carlo simulations the local ferromagnetic
exchange interaction and the long-range dipolar coupling
are considered. The experimental system represents a
pure dipolar model which corresponds to the numerical
simulations for zero exchange interaction. The effects of
the indirect exchange coupling are neglected in this study.
For a monolayer of three-dimensional vector spins S; the
Hamiltonian is given by

Gj
S;- Sj - (S, 'rzj)(sj Ty

+DZ( 53 < ) 1)
ij iy iy

where J is the exchange coupling constant and (i, j) refers
to the nearest neighbors, D the dipolar coupling parame-
ter, and r;; the vector between sites i and j.

The simulations have been carried out on finite Penrose
tilings with free boundary conditions. The samples are
squares or rectangles containing 400, 2500, and 10500
magnetic moments. We have also used circular areas to
cross-check our results. We have considered the dipolar
interaction of each magnetic moment with all the other
moments; i.e., we did not use a cutoff in calculating the
dipolar coupling. The Monte Carlo procedure is the same

137203-2

as described in a previous publication [6]. The experimen-
tal model concerns a 480 mm X 480 mm Penrose tiling
of magnets of 4 mm length separated by 30 mm. The
large distance between the magnets is chosen on purpose
to minimize multipolar terms that can trap the system
into metastable states [7]. The magnets are put onto non-
magnetic vertical axes and can rotate in the x, y plane.

In order to calculate the exchange energy the set of
nearest neighbors that are coupled via the short-range
interaction has to be defined. In periodic crystals the
exchange coupling between next nearest neighbors is
usually enough to ensure the magnetic order. In quasi-
crystals the situation is different. The pattern consists of
two rhombuses with edges of equal length a, one with
angles of 36° and 144° and the other with angles 72° and
108° (Fig. 1). The rhombic tiles are arranged without gaps
or overlaps according to matching rules [5]. The smallest
distance between neighbor sites is the short diagonal of
the tight rhombus (Fig. 1). The exchange interaction along
this diagonal J' is nonpercolating; i.e., it can connect the
spins into only very small clusters of a maximal size
equal to three moments (see Fig. 1). Thus, it cannot ensure
the magnetic alignment of the whole sample. To get a
long-range magnetic order the exchange coupling along
the sides of the rhombuses J must be included (Fig. 1).
Usually, in theoretical studies of critical behavior
of quasiperiodic systems only J or J and J' interactions
are considered (longer bonds are neglected). With such a
treatment of bonds the lattice deviates from the original
Penrose tiling. In our study five different values of the
exchange constant, i.e., for the sides and all diagonals of
the rhombuses, have been considered. J has been taken to
be unity. The exchange interaction decreases exponen-
tially with the distance between magnetic moments.
The strength of the exchange interaction is defined as
Jij = Jexp(l — p;;), where p;; = r;;/a is the distance
between two neighboring moments normalized to the
length of the side of the rhombuses a. p;; takes the lengths
of the diagonals of the Penrose rhombuses. The shortest
diagonal has a length of p;; = 71 <1 with 7 as the
golden mean. Therefore J' = Jexp(1 — 771); ie., J' is
larger than J. Further interactions become weaker than
J with increasing distance as in that case p;; > 1.

Magnetic ordering depends on the ratio of exchange to
dipolar constant R = J/D and on the radius of the cutoff
in the exchange coupling (p). We have performed calcu-
lations for R varying between O (J =0, pure dipolar
interactions) and 1000. The cutoff radius in the exchange
interaction can take one of four values: p = a, which
means that the exchange coupling is considered only
along sides and the shortest diagonal of the Penrose
rhombuses, p = 0.727ar, p = ar, or p = 1.176ar. The
latter distances correspond to the exchange coupling
along the longer diagonals (see Fig. 1).

Figure 2 shows examples of relaxed micromagnetic
configurations for pure dipolar interactions obtained
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FIG. 2 (color). (a) Monte Carlo simulations. Top view of the
portion of the magnetic microstructure in a sample of finite
size for pure dipolar interaction, i.e., R = J/D = 0. The micro-
structure has been obtained for a square sample of about 10 500
vector spins on the Penrose tiling for D/kzT = 100. The spins
belonging to the perimeter of decagons (marked) form closed
chains. The chains overlap according to rules given in Fig. 1.
(b) Experimental model. The perspective view of the mag-
netic microstructure. The red arrows represent the orienta-
tion of dipolar moments of magnets fixed onto the nodes of
the Penrose tiling (thombuses). The magnets can rotate in the
horizontal plane.

in the numerical [Fig. 2(a)] and in the experimental
[Fig. 2(b)] models. Both studies show that after different
relaxation procedures a micromagnetic pattern can have a
different local arrangement of dipoles. The total energy,
however, is always identical. Thus, the ground state in the
case of J = 0 is highly degenerate. All patterns, theoreti-
cal and experimental, have features in common. Magnetic
moments are ordered in circular loops. The diameters
of the loops are identical all over the sample. The loops
overlap. This overlapping is not accidental but follows
certain rules. Amazingly, these rules coincide with the
recently proposed ‘“‘decagonal model” of quasicrystals
[8—11].

In 1991 it was realized [8] that the planar Penrose tiling
can be generated using a single kind of tile, a decagon.
Every decagon consists of Penrose thombuses. In contrast
to the conventional tiling description the decagonal
atomic clusters overlap, which means that they share
atoms with their neighbors. The overlapping rules have
been mathematically proven [9]. Only two types of the
overlap (A and B) are allowed [8]. Location of “A” and
“B” in a Penrose tiling are marked in Figs. 1 and 2(a).

The decagons can be easily recognized in the magnetic
microstructure [Figs. 2(a) and 2(b)]. In order to minimize
the dipolar energy the magnetic moments located on the
perimeter of a decagon form closed chains. The moments
are coplanar to the sides of the decagons. The overlapping
rings of magnetic moments can have the same or opposite
sense of rotation. The orientation of the moments that do
not belong to the perimeter of decagons is highly frus-
trated and varies from cluster to cluster. The overlapping
magnetic decagon chains form a quasiperiodic pattern.
In case of pure dipolar interaction the magnetic pattern is
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formed on the scale of the tiling constant; i.e., a micro-
scopic pattern is formed. In zero magnetic field this state
is degenerate and represents a manifold of quasiperiodic
spin configurations. All frustrated systems that have
been investigated have either a continuously degenerated,
periodic ground state (spins on a honeycomb, a kagome, a
triangular, a pyrochlore lattice [12]) or a completely dis-
ordered one (spin glasses). The superposition of both
types of frustration has not been reported yet. Thus, a
magnetic system on a Penrose tiling belongs to a new
class of frustrated systems where the degenerated ground
state is aperiodic and consists of two parts: ordered
decagon rings and disordered spin-glass-like phase inside
the decagons.

In the following we will discuss the situation where the
exchange coupling is switched on. In the quasiperiodic
Penrose tiling with high R, i.e., with the strong exchange
interaction, we find a single domain for all cutoff radii
p = a. It means that the exchange coupling acting along
the two shortest bonds (J and J') is enough to ensure the
ferromagnetic order. However, the degree of magnetic
order increases with increasing p. While the low tem-
perature magnetization is unity for the large exchange
cutoff radius p = 1.176ar, it is M = 0.975 for p = a
(R = 10°). Hence, the ferromagnetic order in quasicrys-
tals depends on the cutoff radius taken for the exchange
interaction. This can cause strong inhomogeneities of the
magnetization at the boundaries of laterally confined
magnet with quasiperiodic structure.

In finite samples on square and triangular lattices
single domain configurations have been found for high
R values while in-plane vortex structures dominate for
R =1 [13]. The vortex phase arises as a result of the
influence of the sample boundaries. The dipolar interac-
tion prefers to keep the magnetic moments in the film
plane and parallel to the sample edges to avoid formation
of magnetic poles. The exchange energy cares for the
parallel orientation of the neighboring moments. The
interplay of the different contributions leads to formation
of the vortex structure with dimensions of the sample
size. For the Penrose tiling the situation is completely
different. For all R-ratio and cutoff radii the macroscopic
vortex configuration is energetically unfavorable with
regard to the exchange interaction. When the dipolar
energy becomes strong enough to compete with the ex-
change energy (R <0.5) the microscopic decagonal
pattern starts to form (Fig. 3). The decagonal pattern
differs from that of the pure dipolar case when exchange
interaction is effective. The strong exchange coupling
lifts the degeneracy of the decagonal magnetization con-
figuration found for J = 0. Magnetic moments are nearly
coplanar with the sides of the decagons as in the pure
dipolar case. The average magnetization, however, is
not zero; i.e., the magnetic moments have some preferen-
tial direction [Fig. 3(a)]l. We call such magnetization
configuration quasiferromagnetic decagonal structure. A
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(b

local vortices

FIG. 3. (a) Top view of the portion of the quasiferromagnetic
spin configuration in a sample of finite size for p = 1.176ar
and R = J/D = 5. The magnetic moments are nearly coplanar
to the sides of the decagons. The X component of the average
magnetization is My = 0.85. (b) An example of a planar spin
configuration in the region of transition from the single domain
to the decagonal structure for p = 1.176a7 and R = J/D =
0.4. The microstructures have been obtained for square and
disk-shaped samples of 400 and 10 500 magnetic moments at
J/(kgT) = 100. The magnetic moments at the edges are ori-
ented mainly parallel to the boundary as in a conventional
vortex structure. However, only local vortices inside the dec-
agons exist.

further decrease of the ratio R leads to an increasing
influence of the dipolar interaction on the magnetic
microstructure. To minimize the magnetostatic energy
the dipoles form lines at the edges of the sample as in
conventional vortex structure [Fig. 3(b)]. However, a
macroscopic vortex does not form for any shape of the
sample. Small local vortices can appear only inside some
decagon rings [Fig. 3(b)].

Thus, the influence of the boundaries does not lead to
the formation of a macroscopic vortex in a Penrose tiling.
The reason for this phenomenon is the spatial variation of
the number of nearest neighbors and the exchange inter-
action strength. As the strength of the exchange interac-
tion decreases exponentially with the distance, J is much
stronger for neighbors with pij=a, ie., with J = 1, than
for neighbors with p;; > a. The magnetic moments with
p;; = a are situated mainly on the perimeter of the
decagons. It is energetically more preferable to keep these
moments parallel than the other ones which causes the
appearance of decagonal chains and the local vortices.
The formation of macroscopic configurations is sup-
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pressed in favor of the microscopic quasiferromagnetic
pattern.

In conclusion, the stable magnetization configurations
of magnets on a quasiperiodic tiling have been derived
theoretically. In contrast to periodic lattices, the forma-
tion of macroscopic vortex configuration is suppressed
in favor of the microscopic quasiferromagnetic pattern.
For low R ratios a new microscopic structure, the quasi-
ferromagnetic decagonal pattern, represents the mini-
mum of the free energy. For pure dipolar interaction the
decagonal pattern represents a new class of frustrated
systems where the degenerated ground state is aperiodic
and consists of two parts: ordered decagon chains and
disordered spin-glass-like phase inside the decagons.

The authors thank J. Wille for preparation of the ex-
perimental model.
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The spatial variation of the coordination number on the Penrose tiling leads to suppres-
sion of the formation of macroscopic vortex configuration, usual to soft ferromagnetic
films on periodic lattices, in favor of microscopic decagonal pattern. That state repre-
sents a new class of frustrated systems where the structure is aperiodic and consists of
two parts: ordered, stable decagon chains and an unstable, spin-glass phase inside of
the decagons. Virgin magnetizing is a two-step process in that system.

Keywords Quasicrystals; magnetic properties of thin films; frustration; classical spin
models

1. Magnetic Ordering in Quasicrystals

Recent investigations [1-3] show that a long-range magnetic order can exist in quasicrys-
tals despite their aperiodic atomic structure. Experimentally, antiferromagnetic ordering
has been observed in rare-earth-based icosahedral compounds [4]. Theoretically, possible
antiferromagnetic ground states have been studied in the framework of the Ising [1], the
XY [5, 6] and the quantum Heisenberg model [7]. Ferromagnetic microstructure of a two-
dimensional aperiodic film has been derived for three-dimensional Heisenberg spins on a
Penrose tiling [3].

In calculations [3] the long-range dipolar interaction, always existing in magnetic
and ferroelectric materials, has been taken into account. It has been shown [3] that in
ultra-thin film on a Penrose tiling new, decagonal quasiferromagnetic long-range order
appears. In the present investigation I will analyze the reasons preventing formation of usual
ferromagnetic configurations, such as a vortex structure, on a Penrose tiling. Influence of
thermal excitations on the decagonal pattern will be also studied.

2. Energy Considerations

To find out the ground ferromagnetic state on a Penrose tiling we have compared the total en-
ergy density of a macroscopic monodomain, a macroscopic vortex and a Monte-Carlo (MC)
quasiferromagnetic pattern. The quasiferromagnetic pattern has been obtained by means
of MC simulations. The MC procedure is described elsewhere [3]. Two-dimensional films
of classical, three-dimensional magnetic moments S have been studied. The Hamiltonian
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of the problem is given by

Si-S;  ,@Si-rij)S; 1))
H=J;Si-sj+DZ< 5 =3 L f) (D)
1] L] 17

rp

where J is the exchange coupling constant and (i,j) refers to the nearest neighbors,
D the dipolar coupling parameter and r;; the vector between sites i and j. The samples are
squares or rectangles containing 400, 2500 and 10500 magnetic moments. I have also used
circular areas to crosscheck the results. The vortex and the monodomain configurations have
been constructed artificially. Then, in order to take into account effects of the entropy and
inhomogeneous magnetization the configurations have been relaxed at low temperature by
means of MC procedure. The lowest temperature of the usual MC annealing process k7 =
0.05J...0.1J has been used. At that temperature macroscopic patterns cannot be destroyed
by thermal fluctuations while the magnetization is not more homogeneous.

It has been considered in the calculations that the exchange interaction decreases ex-
ponentially with the distance between magnetic moments. The strength of the exchange
coupling is defined as J = Joe'!~#11), where p;; = r;;/a is the distance between two neigh-
boring moments normalized to the length of the side of Penrose rhombuses a (see Fig. 1).
pij takes the lengths of the diagonals of the Penrose rhombuses. The shortest diagonal has
a length of p;; = 1/t < 1 with 7- the golden mean. Therefore J = Joe(l’fl); ie., J'is
larger than Jy. Further interactions become weaker than J, with increasing distance as in
that case p;; > 1. As the magnetic ordering depends on the ratio of the exchange to the
dipolar interaction R = J/D and on the radius of the cut-off in the exchange coupling p I
have performed calculations for different R and p. p can take one of four values: p = a,
which means that the exchange coupling is considered only along sides and the shortest
diagonal of the Penrose rhombuses (see Fig. 1); p = 0.727at; p = at or p = 1.176ar.
The latter distances correspond to the interactions along the longer diagonals. R has been
varied between 0 (J = 0, pure dipolar interactions) and 1000. The energies of different
configurations versus R for the maximal value of p are presented in Fig. 2. As soon as the
energy of the vortex or the quasiferromagnetic structure becomes smaller than the energy
of a single domain a crossing of curves will occur. The point of intersection gives a critical
ratio Rc where the transition between different configurations happens. We do not find
any R and p where the macroscopic vortex is preferred. The shaded area separates the
phases of the monodomain and the decagonal pattern. The center of the interval where all

a(Jy

0.727at ar
a

£

1.176ar a/t (I

FIGURE 1 A section of the Penrose tiling. The Penrose rhombic tiles are indicated. Five
nearest-neighbor distances (the sides and the diagonals of the thombuses) and their lengths
(7 the golden mean) are given. The two strongest exchange bonds according to two shortest
nearest-neighbor distances are denoted as Jy and J'.
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FIGURE 2 (Left) Experimentally obtained dipolar decagonal structure. The red arrows
represent the orientation of dipolar moments of magnets fixed onto the nodes of the Penrose
tiling. (Right) Total energy per spin for a monodomain, an ideal vortex and a Monte Carlo
decagonal structure as a function of R = J/D.

three configurations have comparable energy is denoted as Rc. For R =~ R the magnetic
microstructure consists of ordered regions with the decagonal pattern and local vortices
[3]. Thus, the influence of the boundaries does not lead to the formation of a macroscopic
vortex in a Penrose lattice. In other words the dipolar energy can compete with the exchange
energy only on the scale of the quasiperiodic decagonal microstructure. The reason for this
phenomenon is the spatial variation of the number of nearest neighbors and the exchange
interaction strength in quasicrystals.

2. Thermal Stability of the Quasiperiodic Decagonal Structure

In the remaining section I will discuss the influence of thermal excitations on the decagonal
ordering. To see the time-dependent changes in a microstructure we let run the simulation
for several hundred thousand steps per temperature. Extremely slow annealing procedure
with 30 temperature steps per MC run has been applied. The results have been compared
with an experimental dipolar model made of 309 small magnets on a Penrose tiling. The
magnets can freely rotate in the horizontal plane. An example of the experimental magnetic
pattern is given in Fig. 2. MC configurations have identical features. The decagonal pattern
of pure dipolar system consists of two parts: ordered decagon rings and disordered spins
inside of the decagons. The diameters of the closed loops are identical all over the sample.
The loops overlap. This overlapping is not accidental but follows the rules of recently
proposed “decagonal model” of quasicrystals [8]. Orientations of disordered dipoles are
not static at temperatures kT > 0.2 D. They change continuously during the MC run while
the decagon chains remain stable and the total energy oscillates around its minimal value. In
the experimental model we have simulated the temperature by application of an alternating
magnetic field. When a very weak field is applied the magnetic moments inside of the rings
begin to oscillate. The moments on the perimeter of decagons, in contrast, remain stable
to very high values of the field. In addition to the alternating magnetic field a constant
external magnetic field can be also applied to the structure. Even a strongest possible in-
plane magnetic field was not enough to destroy the experimental decagonal pattern while
the frustrated inner dipoles were immediately aligned. In the simulations the field necessary
for the alignment of the chains must be at least 15 times stronger than that needed for the
alignment of the frustrated moments. Thus, in the quasiperiodic magnetic structure the stable
decagonal pattern coexists with highly frustrated, glass-like phase. That regime corresponds



170 9. Papers on Quasicrystals

132 E. Y. Vedmedenko

to the frustration effects in a Penrose tiling found earlier [9]. Virgin magnetization process
takes place in two steps: switching of the frustrated phase at a weak external magnetic field
and switching of the ordered phase at a higher field.
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Based on Monte Carlo simulations, the stable magnetization configurations of an antiferromagnet on
a quasiperiodic tiling are derived theoretically. The exchange coupling is assumed to decrease
exponentially with the distance between magnetic moments. It is demonstrated that the superposition
of geometric frustration with the quasiperiodic ordering leads to a three-dimensional noncollinear
antiferromagnetic spin structure. The structure can be divided into several ordered interpenetrating
magnetic supertilings of different energy and characteristic wave vector. The number and the symmetry
of subtilings depend on the quasiperiodic ordering of atoms.

DOI: 10.1103/PhysRevLett.93.076407

The last few years have shown a boom in investigations
of the spin order in antiferromagnetic films [1,2] moti-
vated by the dramatic changes in the magnetic properties
of such systems induced by frustration. In contrast to the
rather well studied spin structure of antiferromagnets on
periodic lattices, the antiferromagnetic ordering of qua-
sicrystals is the subject of ongoing scientific debate.
Whereas an experimental finding of long-range antifer-
romagnetic order in rare-earth icosahedral quasicrystals
[3] turned out to be an artifact [4], theoretical models that
deal with magnetism on quasicrystals [5] are known to
exhibit long-range magnetic order. Recent inelastic neu-
tron scattering experiments on the Zn-Mg-Ho icosahe-
dral quasicrystal [6] revealed a very peculiar diffuse
scattering pattern with icosahedral symmetry at tem-
peratures below 6 K. Such a pattern, in principle, can
originate from a noncollinear spin arrangement first sug-
gested by Lifshitz from pure geometrical considerations
[7-9]. However, real-space magnetic configurations lead-
ing to those long wave-vector correlations remain obscure
despite recent interesting results for quantum spins [5].
Thus, the knowledge about the spin structure on quasi-
periodic tilings is of basic importance for experiments as
well as for theoretical predictions of new phenomena,
which can be expected due to nontrivial frustration ef-
fects [10].

The patterns found in our theoretical study provide an
explanation for the origin of the antiferromagnetic mod-
ulations observed experimentally in Ref. [6]. While the
spin order in antiferromagnets is usually characterized by
a periodic modulation described by wave vectors on the
order of inverse atomic distances, the spin order in anti-
ferromagnetic quasicrystals admits three-dimensional
noncollinear structures consisting of several interpene-
trating subtilings with longer wave vectors. Here we re-
port on the details of the low-temperature antiferro-
magnetic ordering and the map of the local frustration
for the octagonal tiling.

076407-1 0031-9007/04/93(7)/076407(4)$22.50

PACS numbers: 71.23.Ft, 75.10.Hk, 75.50.Ee, 75.70.Ak

We discuss the antiferromagnetic Hamiltonian

H= Jijzsi -S; = KIZ(Sf)Q,
[ i

(€]

where S; is a three- or two-dimensional unit vector in the
case of classical vector or xy spins, and S7 is equal to =1
in the case of Ising spins (so S¥ = S} = 0); (i, j) denotes
the nearest-neighbor pairs. For an antiferromagnetic sys-
tem, the exchange parameter J;; is positive, and neighbor-
ing antiparallel spins contribute a lower energy than
parallel neighbors. The coefficient K, is the first-order
anisotropy constant. Our Monte Carlo simulations have
been carried out on finite Ammann-Beenker tilings with
free boundary conditions. The procedure is a simulated
annealing method with at least 15 successive temperature
steps [11]. At each temperature, the convergence of the
relaxation process towards equilibrium has been observed
for any initial configuration after a few thousand
Monte Carlo steps per spin. Hence, the single-spin-update
algorithm is efficient in our case. At the end of the
cooling down process, the total energy is just fluctuating
around its mean equilibrium value. To reduce boundary
effects only the core of a tiling has been analyzed. The
samples on the octagonal Ammann-Beenker structure,
which we concentrate on in what follows, are circular,
containing 2193, 11664 and 53 018 magnetic moments.
The octagonal tiling consists of two motifs: a square
and a rhombus of equal edge lengths a [Fig. 1(a)]. The
diagonal bonds are, usually, neglected in the calculations
[5,12]. We find this disregard physically questionable as
the exchange coupling increases exponentially with de-
creasing interatomic distance. In the present investiga-
tion, the short diagonal of the rhombus and the sides of
the motifs have been considered as nearest neighbors. We
distinguish the two cases J; > 2J and J,; < 2J, where J,
denotes the interaction along the short diagonal and the
interaction strength along the sides J is unity. The first
case corresponds to a rapid growth of the exchange
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FIG. 1. Configurations for a frustrated Ising antiferromagnet
on (a) elementary tiles and (b) six local environments of the
Ammann-Beenker tiling. The bold lines denote the frustrated
bonds. The open and filled circles represent different spins.

coupling with decreasing interatomic distance. The two
nearest-neighbor bonds form six local environments with
coordination numbers varying from five to eight as shown
in Fig. 1(b). They occur with relative frequencies v, =
17— 1242 = 2.9%, vy = —41+292 =~ 1.2%, vc=
34 — 242 = 5.9%, vp = —14 + 1042 = 14.2%, vp =
6 — 42 = 343%, and vy = —1+ 2 =41.4% [13].
Taking into account the short diagonals of the
rhombic tiles increases the average coordination
number of the tiling from 4 (the value without diagonals)
to 8w, + Tvg +6vc+ 5wy + vy +rvp) =8—2/2=
5.17.

First we discuss the Ising system. The square tile of the
octagonal structure is nonfrustrated as every pair of the
moments can be chosen to be antiparallel [Fig. 1(a)]. If we
had not taken the short diagonals of the rhombic tiles into
account, the same would have been true for the entire
tiling, and there would be no frustration, because the
rhombic tiling is bipartite. Now, we consider spins on
short diagonals as nearest neighbors; the rhombic tiles are
always frustrated. If the energy of one nearest-neighbor
pair is minimized by having antiparallel spins, the third
and fourth spins cannot be chosen to minimize the energy
of both of its neighbors [Fig. 1(a)]. The magnetic moment
will necessarily be parallel to one of the neighbors. For
Jgs<2J two out of six possible configurations have
smaller energy as they possess only one pair of parallel
nearest neighbors per rhombus instead of two [Fig. 1(a)].
In this case spins can have one of six possible energy
values corresponding to different local environments
[Fig. 1(b)]. For J, > 2J the four configurations with the
two parallel bonds have the lowest energy as their weight
is smaller than that of the strong diagonal coupling. The
second case comprises much more different possibilities
of energy distribution. To give a quantitative description
of the local frustration we introduce a local parameter f,

|Eial — |E)]

AT

@)
where E; is an actual energy of a spin i and E;; is a ground
state energy of a relevant unfrustrated vertex. With this
nomenclature, only the central spins of the vertices F and
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E are magnetically frustrated fr = 0.4 and fr = 0.8 for
J; = J <2J. The Monte Carlo simulations confirm our
reasoning based on the analysis of frustration. Figure 2(a)
gives the frequency distribution of the exchange energy
per atom E for two cases and a top view of a portion of
Ising configuration with J, > 2J. The energy distribution
for J; < 2J simply reproduces the frequency of six vertex
configurations. The “up” and “down’ configurations are
perfectly ordered and coincide with the black-and-white
model of Niizeki [14]. For large J, we find eight possible
energy values. The up and down subtilings, however, are
spatially disordered [see the inset in Fig. 2(a)]. We have
calculated the magnetic structure factor

1 . ,
§(k) = 5 > eSS 3)

using the Monte Carlo data for different samples. Here k
is the wave vector and S% is a vertical component of a
magnetic moment at the position r. The diffraction pat-
tern of the Niizeki configuration coincides with that of

0.00-
6 5 -4 -3

FIG. 2 (color). The frequency distribution of the energy per
spin on the octagonal tiling for (a) Ising and (b) vector spins.
The solid lines correspond to the case J; < 2J, the dashed lines
to J,>2J. A purely antiferromagnetic interaction at k7 =
0.01/ is considered. The top views of portions of
Monte Carlo configurations with underlying tilings are shown
as insets. The light and dark circles represent different spins in
(a) and different energies in (b), respectively.
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quantum Monte Carlo calculations [Figs. 5(c) and 5(d) of
Ref. [5]] and theoretical prediction [9], while the
intensity map of the configuration Fig. 2(a) is almost
structureless. It means that the Ising solution with
J4 <2J reproduces in essence the antiferromagnetic
superstructure corresponding to a modulation vector
q= 5 5, 5,% . [6] in the octagonal tiling, whereas
stronger coupling leads to a spin-glass state.

An exciting question is if the further minimization of
the total energy and frustration by means of the noncol-
linear alignment of magnetic moments is possible. At first
glance the magnetic structure of the low-temperature pure
antiferromagnetic configuration seems to be rather disor-
dered. The analysis of the local energies, however, reveals
several characteristic energetic maxima in the frequency
distribution shown in Fig. 2(b). The simple existence of
the peaks means that there exist different sorts of mag-
netic moments having well-defined relative orientation
to their nearest neighbors. This orientation, however, is
not associated with any absolute direction in space.
Therefore, in accordance with the Mermin-Wagner theo-
rem [15], no long-range order exists in two dimensions
with continuous symmetry, because thermal fluctuations
result in a mean-square deviation of the spins from their
equilibrium positions which increases logarithmically
with the size of the system. The addition of a very weak
anisotropy, which often exists in real samples, does not
change the distribution of the exchange energy, but per-
mits one to anchor the absolute spatial orientation of the
magnetization. Nevertheless, at first glance the total struc-
ture still looks spin-glass-like. In the following, we show
that the antiferromagnetic structure of the octagonal
tiling is perfectly ordered, but the order is nontrivial
and unusual for periodic crystals. We concentrate a fur-
ther description on 3D vector spins while similar results
for xy spins have been obtained.

To obtain an absolute symmetry axis, we apply a very
weak out-of-plane anisotropy K; =~ 1073J to the system.
The squared vertical component of magnetization ($%)?
becomes finite. The positions of the energy peaks on the
frequency diagram remain unchanged. All maxima are
different from those of the Ising model. It means that the
angles between the neighboring magnetic moments are
not always equal to 180° or 0°; i.e., the magnetic struc-
ture is noncollinear. The different number of peaks—
eight for J, <2J and two for J; > 2J [Fig. 2(b)]—al-
ready tells us that, in contrast to the Ising case, the
maxima do not coincide with the six vertices of the tiling.
The minimal possible local energy increases from —8J to
approximately —6J for J;, = J or —5.44J for J, = 2.2J.
The average energy per spin, however, decreases by more
than 0.3J and reaches the value of E =~ —2.85J and E =~
—3.30J, respectively. Hence, the increase of the entropy
permits one to minimize the average frustration and the
total energy of the system.

Spatial arrangements of the magnetic moments as a
function of the exchange energy are given in Fig. 3 for
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J, <2J and in the inset to Fig. 2(b) for J, > 2J. Each
configuration of Fig. 3 represents a certain energy range
corresponding to one of the eight peaks in the spectrum
of Fig. 2(b). Colors represent the x projection of the
magnetization. The magnetic moments form eight subtil-
ings of different energy (E|, ..., Eg) which generally do
not coincide with a specific vertex type. The splitting of
the energy and frustration levels is described in detail in
Fig. 3. For example, the vertices B and C (Fig. 1) belong to
the same energy maxima E, but have different local
frustration fz = 0.24, f- = 0.11 (Fig. 3). At the same
time the central spin of the vertex D can have either the
energy E; or E, and, therefore, can have two different
values of the frustration fp; = 0.01 and fp, = 0.11 de-
pending on local surroundings. Thus, every configuration
of the Fig. 3 can enclose either a part of the atomic places
belonging to one vertex type or two different vertex types
together. Nevertheless, all structures have a perfect gen-
eral spatial ordering. Each subtiling can be separated into
the energetically degenerate ‘“‘right” and ‘left” parts
which also have a perfect quasiperiodic arrangement.
However, not all right or left moments have identical
orientation in space. Figure 4 shows a perspective view
of a portion of a typical Monte Carlo configuration and a
corresponding energy map. The central magnetic moment
has the lowest energy and belongs to the E; subtiling. Its
eight nearest neighbors have identical energies and corre-
spond to the energy E; despite having different sets of
mutual angles. The moments forming the next ring have
energy E¢. The last ring consists of the alternating £3 and
E¢ spins. Figure 4 shows one of the radially symmetric
vertices. However, in the octagonal tiling vertices with a
different surrounding can also be found. The energy dis-
tribution is then different. Hence, the magnetic structure
for J;, <2J is noncollinear and consists of eight inter-

E =-595J E,=-535J E,=-495] E, =-445J
f4 029 f, _034 fg 0.11 fm—OOI 02 2011
? 2002 °
u4‘4‘u‘a‘a° ‘).wu“'uhuu.‘, Q‘o:’ga} ﬂ:} *,‘.:D)o‘.':::“:af::i
%% 9 %0 e o W o0 0e Buf 9 %e0 5070, %,4 9,
9 %5 9%, 5% 0@ uoi"ﬂ!”\‘nn 2500 9500 2 %00,
cs e s e e 3 e we g;;;;@z;;;;
e 0 0 LR b X N uva '*“" ¢‘*'¢ 990 o0
° . BHA TR A ,,”.mg %290, 90 09 900 @
@ 20 90 o N e » e [ ,'.g.o.',:e
il THnaN W ERAL RS X St
E, =-2.85J E, =-255J E, =-195J J

FIG. 3 (color online). Spatial distribution of magnetic mo-
ments belonging to eight subtilings of a noncollinear configu-
ration on an octagonal tiling consisting of 2193 spins. J; > 2J.
The light and dark circles represent positive and negative x
components of the magnetization. The in-plane components are
not given for the sake of simplicity. Average values of the
exchange energy E and of the local frustration f per spin are
indicated.

076407-3



174

VOLUME 93, NUMBER 7

PHYSICAL REVIEW LETTERS

9. Papers on Quasicrystals

week ending
13 AUGUST 2004

Og Og{ :’gogqal 608

N Ng }ﬂ (N 468
0 9 QQ D

FIG. 4 (color). Perspective view of a portion of a Monte Carlo
configuration on an octagonal tiling. The top view of the patch
and the energy map are shown as insets. Magnetic moments are
represented as cones. The cones are colored according to their
vertical magnetization, changing gradually from red for up to
blue for down spins. In the energy map inset, the colors encode
the energy per moment.

penetrating subtilings. For J, >2J we find only two
subtilings of different energy.

A frequency distribution of the angle between nearest
neighboring moments shows five characteristic angles
close to 60°, 80°, 120°, 140°, and 180° for small J,; and
a single mutual angle of 110° for large J,. Because of this
noncollinearity the energy of the system is decreased.
The diffraction pattern of the whole structure is more
complex than that of the Ising or the quantum-
mechanical [5] model. As the spin structure is noncol-
linear, not only the structure factor S but also $* and
S$¥¥ can be recognized (see Fig. 5). The eightfold $** and
S§% patterns contain additional long wave-vector peaks
which could not be identified in the previous investiga-
tions [5]. In dependence on the anisotropy (or on the
initial random configuration for K; = 0) new peaks
also occur in §*”. The Bragg reflexes found in our study
select a subset of the wave vectors given in Ref. [9], where
ny + ny, + n3 + ny is odd. Peaks with n; + n, + n3 + ny
even are extinct. According to the nomenclature of
Ref. [9], the following wave vectors can be identified:

(1,0,0,0), (1,-1,1,0, (3,—-2,1,1), 3, —1,-12),
(1,1,-1,0), (1,01,-1), (0,2,—1,0), (0,01, —2),
(=1,0,1,=3), (0,2, =2, 1), (0, 1, —2, 2). Hence, the non-

collinearity of the spin structure gives rise to selection

K -

Km

S b b o v s o

g

6 6 4 2 0 2 4 66 4 2 0 2 4 6

€ 4 2 0 2 4

FIG. 5. The calculated Bragg scattering of $*, §”, and $°
components of magnetization for the antiferromagnetic super-
structure. Reflexes indicated by arrows are new in comparison
to previous studies [5].
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rules different from those of collinear models [5,7]. With
an increasing sample size the peaks become more diffuse
and may correspond to the diffuse scattering signal of
Ref. [6].

In conclusion, we demonstrate that the frustrated clas-
sical Ising system with antiferromagnetic coupling on a
quasiperiodic octagonal tiling is perfectly ordered. All
spins can be divided into six quasiperiodic (in the 3D
physical space) or six periodic (in 6D periodic crystal)
subtilings of different energy. Each subtiling corresponds
to the one of six vertex types of the Ammann-Beenker
structure and is degenerated for up and down magnetic
moments. Quantitatively, only two out of six subtilings
are frustrated with the local coefficients frp = 0.4 and
fr=0.8. The vector spin system admits a three-
dimensional noncollinear magnetic structure. For J; <
2J, the whole structure can be decomposed into eight
subtilings of different energy which generally do not
coincide with a specific vertex type. All subtilings are
frustrated. However, the total degree of frustration and
the energy of the system is minimized compared to the
noncollinear case. The subtilings are degenerated with
respect to the spin direction. The codirectional spins of
every subtiling reveal perfect quasiperiodic ordering with
a wave vector which is specific for a given subtiling.

We thank R. Lifshitz for helpful comments and index-
ing of the Bragg peaks. Financial support from the
Interdisciplinary Nanoscience Center Hamburg (INCH)
is gratefully acknowledged.
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The stable magnetization configurations of antiferromagnets on quasiperiodic
tilings are investigated theoretically. The exchange coupling is assumed to
decrease exponentially with the distance between magnetic moments. It
is demonstrated that the combination of geometric frustration and the
quasiperiodic order of atoms leads to complicated non-collinear ground states.
The structure can be divided into subtilings of different energies. The symmetry
of the subtilings depends on the quasiperiodic order of magnetic moments. The
subtilings are spatially ordered. However, the magnetic ordering of the subtilings
in general does not correspond to their spatial arrangements. While subtilings of
low energy are magnetically ordered, those of high energy can be completely
disordered due to local magnetic frustration.

1. Introduction

In contrast to the rather well-studied spin structure of antiferromagnets on periodic
lattices, the antiferromagnetic ordering of quasicrystals is the subject of ongoing
scientific debate [1-13]. Experimentally, it has been demonstrated that rare earth
containing quasicrystals exhibit spin-glass-like freezing at low temperatures [4, 6].
However, this freezing is different from that of conventional spin glasses. The
observed dependence of the thermoremanent magnetization on the magnetic field
does not follow the spin-glass behaviour and the frequency shift of the freezing
temperature lies between those of a canonical spin glass and of a superparamagnet
[8]. Hence, the free energy landscape of a rare earth quasicrystal is different from
both the highly degenerate distribution of energy barriers in spin glasses and the
single global energy minimum in superparamagnets.

Although the atomic and electronic structure of rare earth quasicrystals is not
completely understood, it has been postulated [8] that the low-temperature micro-
structure of such a magnet resembles geometrically frustrated but site-ordered
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magnetic systems and consists of weakly interacting magnetically ordered clusters.
Another interesting approach is based on recent elastic neutron scattering experi-
ments on a Zn-Mg—Ho icosahedral quasicrystal [7] revealing a very peculiar diffuse
scattering pattern with icosahedral symmetry at temperatures below 6 K. In contrast
to reference [8], the authors interpret the diffraction pattern as that of several inter-
penetrating quasiperiodic sublattices, where all spins point in the same direction [11].
Recent theoretical studies of real-space magnetic configurations on the octagonal
tiling [9, 11-13] demonstrate that the energy landscape, in accordance with [§], is
neither degenerate nor has a single global minimum. All spins can be divided into
several quasiperiodic (in the 2D physical space) or periodic (in the corresponding 4D
periodic hypercrystal) subtilings of different energy.

In the present investigation, we calculate the low-temperature stable anti-
ferromagnetic configurations on several planar quasiperiodic tilings with tenfold
symmetry. In most rare earth intermetallic compounds an oscillatory (RKKY-like)
exchange interaction has been observed. To tackle this complicated problem first
we concentrate on exponentially decreasing exchange coupling corresponding to a
rapid-decaying limit of an oscillatory interaction. It will be demonstrated that
the real-space magnetic structure is generally three-dimensional and non-collinear.
In disagreement with [8], and in accordance with [7], the magnetic structure consists
of several ordered interpenetrating quasilattices with characteristic wavevectors.

2. Simulations and results

We have investigated the magnetic ordering in an antiferromagnet on Penrose, anti-
Penrose, Tiibingen triangle [14] and Tie—Navette [15] tilings by means of Monte
Carlo simulations. Two-dimensional films of classical, three-dimensional magnetic
moments S have been studied. The Hamiltonian of the problem is given by

H=1J;YS;-S;— K Y (S (1)
(i.]) i

where J;; are the exchange coupling constants and (i, j) refers to pairs of spins. Two
cases have been explored: J; =1 for all r; <1 (and J; = 0 for all r; > 1), and an
exponential decrease of the exchange interaction with the distance between magnetic
moments (which for practical purposes was cut off at distance r; > 2), where r;
denotes the distance between sites i and j (as compared to the edge lengths in the
tiling, which are chosen to have length one). The samples are patches of square or
rectangular shape, containing some 10 500 magnetic moments. We also used circular
areas to check that our results are not affected by the shape of the sample. An
extremely slow annealing procedure, with 50 temperature steps per Monte Carlo
run, has been applied. To see the time-dependent changes in a microstructure, we
ran the simulation for several hundred thousand steps per temperature.

In previous theoretical studies [2, 3, 5] frustrated, two-dimensional structures
have been proposed. In accordance with previous publications, we find that the
ground state of a system with purely antiferromagnetic exchange interactions
is locally frustrated. Under the local frustration f we understand the normalized
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difference between an actual energy E; of a spin i and a ground state energy E;; of
a relevant unfrustrated vertex with all spins antiparallel to the spin i

|Eial

In contrast to common folklore, the configurations are three-dimensional. Similar
to the underlying atomic symmetry, the magnetic structure is quasiperiodic, i.e. it
consists of identical units which do not have identical surroundings.

Three-dimensional representations of parts of the low-temperature quasiperiodic
patterns observed for the Penrose and the octagonal tiling are shown in figure 1.
The corresponding configurations represent the characteristic Penrose and Amman—
Beenker ‘stars’, which are also shown in figure 1 for clarity. On the Penrose tiling, the
‘star’-pattern can easily be recognized in the magnetic structure, because the
moments belonging to the perimeter of enclosed ‘stars’ show perfectly antiparallel
alignment. On the octagonal tiling, the situation is more complicated. The central
magnetic moment is neither parallel nor antiparallel to the neighbouring

Figure 1. Perspective view of a portion of a Monte Carlo configuration on the Penrose tiling
(top) and the octagonal tiling (bottom). Top views of the corresponding patches are shown on
the right. The magnetic moments are represented as cones.
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Figure 2. The frequency distribution of the energy per spin on the Tiibingen triangle
(a), anti-Penrose (b), Penrose (c) and Tie—Navette (d) tilings for classical vector spins. A purely
antiferromagnetic interaction J at a temperature k7 = 0.01J is considered. The insets in
(a)—(c) give the calculated Bragg scattering of the S component of the magnetization
for subtilings composed of magnetic moments belonging to peaks with —6 < {EL < —4.

The scale goes from —6 to 6 k!, /n. The inset in (d) shows a portion of the stablesrrl?agnetic
configuration on the Tie—Navette tiling as described in the text. Dark and light grey arrows

denote antiparallel magnetic moments.

magnetic moments. Its eight nearest neighbours have different sets of mutual angles.
The moments forming the next ring have still another orientation with respect to
their nearest neighbours. The non-collinear alignment of the neighbouring moments
indicates that the system is geometrically frustrated, i.e. there is no possibility to
align all neighbours in an antiparallel arrangement. Similar non-collinear antiferro-
magnetic configurations are formed in the Tiibingen triangle and anti-Penrose til-
ings. Within the examples of tilings considered here, the Tie—Navette tiling represents
an exception. The magnetic structure observed for this tiling consists of two anti-
ferromagnetically aligned quasiperiodic sublattices, as shown in figure 2d. This
means that every pair of nearest neighbouring moments can be aligned antiparallel,
i.e. the antiferromagnetic configuration is not frustrated.

We have calculated the stable low-temperature configurations and the frequency
distribution of the exchange energy per atom (E) for the Tiibingen triangle, anti-
Penrose, Penrose and Tie—Navette tilings. The calculations have been performed
for an exponentially decreasing exchange coupling and for a short-range exchange
coupling Jj; = const = 1 for all r; < 1. The analysis of the local energies reveals
several characteristic energetic maxima in the frequency distributions shown in
figure 2a—d. The magnetic configurations and the number of the energy peaks for
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the same tiling are identical for both choices of exchange couplings (J; oc ™" and
Jj=1 for rij < 1). For different tilings, the number and the width of the maxima
are different. The simple existence of the peaks means that there exist different sorts
of magnetic moments having well-defined relative orientations with respect to their
nearest neighbours. These relative orientations depend on the tiling and not on the
choice of the exchange couplings J;. For J(r; < 1) =1, however, it can be seen
directly from the energy distributions of figure 2 whether the magnetic ordering is
collinear or non-collinear. If all nearest neighbours are collinear (parallel or anti-
parallel), then the exchange energy per spin should have integral values depending
only on the number of the neighbouring moments. This is indeed the case for the
Tie—Navette tiling; compare figure 2d. For a non-collinear alignment of neighbour-
ing magnetic moments, (E) should be non-integral as the cosines of the angles
between the moments are no longer zero or unity. This happens for all other tilings
we considered; compare figure 2a—c. The average energy of non-collinear configura-
tions is smaller than the energy of any collinear solution. Hence, the increase of the
configurational entropy permits us to minimize the average local frustration and
the total energy of the system.

The spatial arrangements of the exchange energies of the magnetic moments are
given in figure 3. Each shade of grey in figure 3 represents a certain energy range
corresponding to one of the peaks in the spectra of figure 2. The magnetic moments
form subtilings of different energies, which generally do not coincide with a tiling
obtained by selecting a specific vertex type. The subtilings of low energy ;p% < —3are
magnetically stable and ordered while those of higher energy ;p% > —3 are disor-
dered. The disorder can be seen in the portion of the magnetic configuration shown
at the bottom of figure 1. The two front moments belonging to the subtiling of
a large energy have angles which deviate considerably from those of the other
moments in the ring while the moments in the inner rings with lower energy have
collinear orientations. With increasing temperature the magnetization of subtilings
of large energy is fluctuating while the magnetization of low-energy subtilings is still
stable. The spatial quasiperiodic ten-fold symmetry of the ordered subtilings can be
seen from the calculated magnetic Bragg scattering given in the insets to figure 2.
While the atomic ordering of the unstable subtilings can be seen in the Fourier space
their magnetic reflexes are extinct because of disorder.

3. Summary

In conclusion, we demonstrate that a vector spin system with antiferromagnetic
coupling on different quasiperiodic tilings is locally frustrated. All spins can be
divided into several quasiperiodic (in our two-dimensional physical space) or
periodic (in the corresponding four-dimensional periodic hypercrystal) subtilings
of different energy, which generally do not coincide with a specific vertex type.
The vector spin system admits a three-dimensional non-collinear magnetic structure.
The non-collinearity of the magnetic configuration permits us to minimize the degree
of frustration and the total energy of the system in comparison with the collinear
case. The co-directional spins of every subtiling reveal quasiperiodic ordering with
a wavevector which is specific for a given subtiling. The Tie—Navette tiling is not
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Penrose (c) and Tie—Navette (d) tilings. The circles give positions of magnetic moments.
Different shades of grey denote different energies corresponding to the peaks in figure 2.
Purely antiferromagnetic interaction with /=1 for all r; <1 at kT = 0.01J is considered.

frustrated and admits collinear magnetic configurations. For the short-ranged
exchange interaction, this arises as a consequence of the bipartiteness of the graph
formed by connecting interacting pairs of spins; however, we observe that the anti-
ferromagnetic order persists for the case of a long-range, exponentially decreasing
exchange interaction.
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