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Preface

The work presented here concerns theoretical aspects of magnetism in many dif-
ferent systems of reduced dimensions including two-dimensional films, frustrated mag-
nets, magnetic nanoparticles and their arrays. This report summarizes investigations
performed by me and my co-workers at the University of Hamburg, the Max-Planck
Institute for Microstructure Physics and the University of Paris VII. Its intention is to
give a comprehensive overview on the main areas of my scientific activity in the last 7
years, which are Magnetic Ordering of the Spin Reorientation Transition, Anisotropic
Orientation of Magnetic Domain Walls, Magnetostatic properties of Nanoarrays and
Magnetism in Quasicrystals. The report is structured as follows:

- In the first part, the main ideas behind the work and a summary of the
most important results are given. The interconnections between different topics are
highlighted;

- The second part contains a selection of 19 manuscripts, which have been
already published or are in press. The aim of this section is to give deeper informa-
tion on the issues presented in the first part. Therefore, the papers are referenced
correspondingly to the Chapters of the first part;

- The appendix contains a full list of my scientific publications and patents to
give a complete overview on my activities.
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me the world of magnetism. I gratefully acknowledge fruitful discussions with Dr.
Y. Millev, Prof. Dr. U. Gradmann, Dr. D. Berkov, Prof. Dr. E. Bauer, Prof. A.
Lichtenstein, and Prof. Dr. D. Pfankuche. I thank for theoretical explanations of
Prof. Dr. M. Baake and Dr. U. Grimm. I find very valuable collaboration with Jr.
Prof. Dr. S. Heinze and Dr. P. Ferriani.

My thank goes to Ms. P. Roth, Ms. U. Brenger, Ms. B. Truppe, Mr. B. Kellershof,
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Chapter 1

Introduction

The configuration of magnetization on all length scales is one of the central ques-
tions of magnetism as it determines macroscopic properties of a magnet. Whilst in
the past the broader scientific issues have concerned magnetic structuring on a micro-
scopic scale, in the context of recent developments in the field of nanoscience magnetic
configurations on the nanoscale have become increasingly important.

The rapid rise of the scientific research on ever-smaller magnets is due to the
appearance over the past 10 years of a collection of new experimental techniques
that have made manipulation and construction of objects at the nanoscale possible.
Some of these experimental methods, such as scanning tunneling microscopy with
polarization analysis and magnetic force microscopy have created new capabilities for
characterizing nanostructures. The application of new and extraordinary experimental
tools to systems of reduced dimensionality has created an urgent need for a quantitative
and qualitative understanding of matter at the atomic scale. An additional motivation
for the investigation of nanomagnetic ordering is its increasing importance for its
application in sensors, logic devices and in data storage.

Many new problems, that are not characteristic of bulk materials, arise at the
nanoscale. These new problems generate many questions. Such as: what is the
role of frustrating spin arrangements for the stability and hysteretic properties of
two-dimensional magnets and nanoparticles; what are the size- and the temperature-
dependent properties of nanomagnets; what is the role of the structural disorder for
the magnetic ordering in nanoobjects and which effects may arise due to the discrete
nature of matter? Theoretically, these questions can be effectively studied by model
Hamiltonian methods or within analytical approaches. One of the best investigative
tools based on model Hamiltonians to solve these stochastic optimization problems
are Monte-Carlo methods. They are particularly good for realistically evaluating all
kinds of transition probabilities and the effects of entropy. Since magnetic ordering
at nanoscale is driven by entropy as well as by energy, Monte-Carlo calculations are
really essential for describing magnetization configurations on the nanoscale. Modern
classical Monte-Carlo schemes are able to describe large systems consisting of many
ten thousands of atoms. The method naturally incorporates long-range dipolar inter-
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2 1. Introduction

actions, effects of the atomic lattice, the temperature and the entropy. In combination
with analytical calculations, and experimental evidence, the Monte-Carlo treatment is
a powerful tool for the description of magnetic ordering in magnets of reduced dimen-
sionality.

Outline

This work presents a systematic theoretical study of the influence of the compet-
ing interactions, discrete atomic structure, temperature, geometrical frustration and
the finite sample size on the magnetic ordering in nanostructures. The basic methods
used in this work are; extended Monte-Carlo numerical simulations, analytical calcu-
lations of magnetostatic moments of nanoparticles based on the fundamental theory
of electrostatics, numerical and analytical calculations of magnetostatic energies and
demagnetizing factors of nanoplatelets, and phenomenological approaches concerning
the calculation of the ground state magnetic configurations. The corresponding theo-
retical procedures are presented at the beginning of each of the four main sections of
the manuscript.

Chapter 2 is devoted to the theoretical description of the magnetic structure of
the Spin Reorientation Transition in nanometer thin films and of nanosize structures.
After a short introduction to the theoretical methods thickness-driven magnetization
reorientation is discussed in the framework of the first- and second-order uniaxial
magnetic anisotropy approximation. The correspondence between theory and recent
experimental advances on the spin reorientation transition is then analyzed. It is shown
that the discrete nature of an atomic lattice may lead to the size-driven reorientation
of magnetization in nanoparticles, i.e. the magnetization direction can be changed
by shrinking the lateral size, keeping the thickness fixed. It is predicted that the
critical size of the reorientation can be very large compared to the film thickness.
It is demonstrated that the shape anisotropy of a nanomagnet can be divided into
the discrete and the continuum contributions. A compact formula is derived for the
demagnetization factors and the dipolar magnetostatic anisotropy energy density for a
saturated (zero-susceptibility) continuum ferromagnet, possessing the shape of a right
circular cylinder of any geometric ratio k = d/t.

In the third Chapter the orientation of domain walls in magnetic nanowires is dis-
cussed. In mesoscopic crystals the orientation of magnetic domain walls is usually
determined by the competition between the magnetocrystalline and shape anisotropy.
An isotropic exchange interaction cannot affect the global wall orientation in bulk crys-
tals of cubic symmetry. It is demonstrated that in nanostructures of a few monolayer
thickness the magnetic anisotropy and the magnetostatic energy play a minor role
for the wall orientation. In case of low-symmetry objects the orientation of domain
walls is mainly determined by the discreteness of the atomic lattice structure and by
the exchange energy. The reduced symmetry of the film surface and the distortion of
the atomic structure due to the pseudomorphic growth of nanoobjects can often lead



3

to the orientational dependency of the exchange tensor and, hence, to the anisotropy
in the orientation of domain walls. Correlations of the theoretical results and recent
experiments on magnetic nanoordering are given.

The theoretical study of the magnetostatically interacting nanoarrays is presented
in Chapter 4. The multipole moments and multipole-multipole interactions of uni-
formly polarized particles have been calculated based on the fundamental theory of
electrostatics. The polarization may have its origin in magnetization or ferroelectric-
ity or be an intrinsic property of molecules. It is demonstrated that, depending on
the geometry of the particles, the higher order interactions can be comparable to, or
even stronger than, the dipole-dipole interaction. The higher order moments give rise
to an additional energy contribution in arrays of close packed polarized nanoparti-
cles. The influence of particle aspect ratios as well as array periodicity is discussed.
The low-temperature stable states and the magnetization reversal of realistic two-
dimensional nanoarrays with dipolar, and higher-order magnetostatic interactions are
studied theoretically. For a general geometry of the multipole-multipole interaction
energy a Hamiltonian in spherical coordinates has been introduced into the Monte
Carlo scheme. It is demonstrated that higher-order interactions considerably change
the dipolar ground states of in-plane magnetized arrays favoring collinear configura-
tions. The multipolar interactions lead to enhancement or decrease of the coercivity
in arrays with in-plane or out-of-plane magnetization.

Theoretical advances in the description of the magnetic ordering and its stability
in two-dimensional quasiperiodic tilings with strongly localized magnetic moments are
presented in Chapter 5. It is demonstrated that the combination of the magnetic
frustration and the quasiperiodic order of atoms leads to noncollinear ground states.
Experimental and theoretical evidence for the possibility of a new phase, in which
stable, magnetically ordered subtilings coexist with highly frustrated, glass-like regions
is given.
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Chapter 2

Magnetic Ordering of the Spin
Reorientation Transition in
Nanostructures

2.1 Introduction

A classification of experimentally available magnetic structures may be given in
terms of the dimensionality modulation: three-dimensional systems (3D), like bulk
materials or thin films; two-dimensional systems (2D), like surfaces, ultrathin films
and multilayers; one-dimensional systems (1D), like nanowires; and so-called zero-
dimensional materials with all three dimensions on the nanometer scale like small
atomic clusters or nanoparticle arrays. With decreasing dimensionality of a magnetic
object new factors determining the magnetic ordering come into play.

One of the very interesting effects one observes in ultra-thin 2D ferromagnetic films
and 1D nanoparticles is a reorientation of the spontaneous magnetization by varying
either the film thickness or the temperature. For not too thin films the magneti-
zation generally is in-plane due to the shape anisotropy originating from the dipole
interaction. On the other hand in very thin films this may change due to various
competing anisotropy energies of structural, magnetoelastic or magnetostatic origin.
Broken atomic symmetry at the surfaces of a film, or absent in the ideal crystal strain
induced distortion, often leads to uniaxial anisotropy energies favoring a perpendicu-
lar to the film plane magnetization [1]. Over the last decade the investigation of the
Spin Reorientation Transition (SRT) in ultrathin films has been a vivid field in basic
research. A good collection of literature on the theory of temperature-driven SRT can
be found in [2]. To describe the thickness-driven SRT Monte Carlo simulations and
analytical studies have been performed in first-order approximation of perpendicular
magnetic anisotropy. In those investigations emphasis was put on the change of the
magnetization orientation as a result of competing anisotropy and dipolar energies
with temperature or thickness as a driving parameter [3–14]. Phase diagrams were
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6 2. Magnetic Ordering of the Spin Reorientation Transition in Nanostructures

put forward and noncontinuous magnetization changes postulated [3, 4, 7]. The evo-
lution of the magnetic microstructures was not explicitly studied in these numerical
investigations. The configuration of magnetization, however, may strongly influence
the details of the switching of the magnetization and thus the macroscopic behavior
of the ferromagnet as it has been shown experimentally [15–19]. Therefore, the role of
magnetic ordering is an important question for physics of the SRT.

In this review a survey will be given of recent theoretical advances in the study
of the magnetic microstructure of SRT. The simulation technique will be introduced
in the Section 2.2. Chapter 2.3 will be focused on the thickness dependent Spin
Reorientation Transition in the first order perpendicular anisotropy approximation.
Then, the effects of higher-order anisotropies will be analyzed (Chapter 2.4). The
influence of the discrete structure of an atomic lattice on the nanomagnetic ordering
and the size driven SRT will be discussed in the Chapter 2.5.

2.2 Simulation

2.2.1 Competing interactions

The ordering of magnetization is a cooperative effect made possible, below a crit-
ical temperature, by the interactions between the magnetic moments of the unpaired
electrons throughout a solid. The magnetization configuration is influenced by many
factors, some of the more important of which are spin value and dimensionality, the
degree of structural and magnetic disorder, the temperature, and the presence of com-
peting interactions.

The main energetic ingredient governing magnetic ordering is the quantum mechan-
ical exchange interaction. Without going into details the exchange coupling between
two neighboring magnetic ions will force the individual moments into parallel (fer-
romagnetic) or antiparallel (antiferromagnetic) alignment with their neighbors. It is
very strong but short range, i.e. decreases rapidly as the ions (atoms) are separated.
The direct exchange interaction in it simplest form can be described by the Heisen-
berg Hamiltonian containing a sum of the products of two variables, vector spins or
operators belonging to the nearest-neighboring lattice sites

Hexch =
∑

〈i,j〉
JiS̄i·S̄j =

∑

〈i,j〉
Ji(α(Sx

i Sx
j + Sy

i Sy
j ) + β(Sz

i S
z
j )) , (2.1)

where Sx, Sy, Sz are projections of either an operator S̄ for a quantum system or of a
vector ~S for a classical system. The case of α = 0, β = 1 corresponds then to the Ising
model, α = 1, β = 0 - to the XY model and α = β = 1 - to the Heisenberg model.
For relatively high temperatures the magnetic ordering can be successfully described
in the framework of the classical models. The main difference between the three
classical cases is different number of available states. For magnetic systems of reduced
dimensionality, where noncollinear magnetic states often appear, the Heisenberg model
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has been chosen for the computations as a three dimensional Heisenberg vector of a
unit length can have any orientation in 3D physical space.

The second energetic component which is always present in an ensemble of atomic
magnetic moments (dipoles) is the dipolar interaction. It comes from the fact that
every moment itself is a source of a magnetic field and can be aligned in the field of any
other dipole and vice versa, i.e. the moments interact. The interaction Hamiltonian
reads

Hdip = D
∑

i,j

(

Si · Sj

r3
ij

− 3
(Si · rij) (Sj · rij)

r5
ij

)

, (2.2)

where rij is the distance between moments i and j and D =
µ0g2µ2

B

4πa3 - the strength of
the coupling with µ0 - the permeability of the vacuum, g - Lande factor, µB - Bohr
magneton and a - lattice constant. The strength of the dipolar interaction between
two dipoles is only of order of few degree of Kelvin. However, because of the long-
range character and the position dependence the dipolar interaction may significantly
change a critical behavior and magnetic ground states.

The dipolar interaction is the source of the so-called shape anisotropy. The shape
anisotropy of a finite body (△ED) is described by the demagnetizing tensor N : △ED =
N · 2πM2

S, where MS is the saturation magnetization and 2πM2
S the shape anisotropy

of the infinite continuous magnet. Neglecting the discrete nature of matter N can be
analytically calculated for uniformly magnetized bodies like ellipsoids.

Another energetic component which is necessary for the appearance of SRT is the
crystal anisotropy. Whatever the microscopic origin of crystal anisotropy is, following
a phenomenological approach, one may express the anisotropy energy density as a
function of the direction cosines (or sines) of the magnetization component along
the anisotropy axis, because the anisotropy energy is invariant under magnetization
reversal. In the case of ultrathin films with uniaxial anisotropy, the energy density is

K1sin
2(θ) + K2sin

4(θ) + K3sin
6(θ) + K1

3sin
6(θ)cos(6φ) + ... (2.3)

with θ and φ polar angles with respect to the direction of the anisotropy. The mag-
nitude of anisotropy constants decreases rapidly with increasing order. However, as
it will be demonstrated below, even weak higher order contributions may change a
magnetic ground state of a system if the sign of a higher order term is different from
that of the first order anisotropy constant.

2.2.2 Monte Carlo Simulations

As has been pointed in the Section 2.2.1, for relatively high temperatures a mag-
netic crystal can be successfully described by atomistic classical models. During the
last years we could reach a considerable progress in the area of application of clas-
sical Monte-Carlo (MC) calculations to real magnetic systems [20–25]. Modern MC
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computational schemes are able to describe large systems consisting of many tens thou-
sands of atoms [23]. The long-range magnetostatic interactions and temperature can
be incorporated into the model Hamiltonian with reasonable efforts. Since magnetic
ordering is a complicated many-body problem driven by minimization of the total en-
ergy this method is extremely powerful for the description of ground state properties
of magnets.

A large advantage of the MC approach is that in contrast to the micromagnetic
scheme, where a magnetic material is represented by blocks of a continuous medium, a
discrete lattice structure of a specific material can be introduced into the calculations.
Introduction of lattice symmetry provides a unique opportunity to account for the ef-
fects arising from the discrete nature of matter. However, calculations with atomistic
resolution are very computer power intensive, especially when long-range interactions
are considered. In this case one needs the CPU time proportional to N2 per one Monte
Carlo (MC) step, where N is the number of spins. For studies of magnetic ordering in
objects with reduced dimensionality the dipolar coupling plays an especially important
role, as it can compete with the exchange interaction due to its long range character.
Hence, it must be considered in calculations. This, however, means that large samples
can be treated only with periodic boundary conditions in order to reduce the size of a
sample to the size of the periodically repeated unit cell. Unfortunately, the periodic
boundary conditions often cannot be addressed for nanostructures of finite dimension
because of the non-periodicity of the magnetic structure. In addition, periodic bound-
aries in many cases can introduce artificial periodicity and other unwanted effects. To
overcome these difficulties we have developed a scaling approach [21] which enables
us to consider very large samples (up to 1µm) with open boundary conditions which
could not be introduced directly in an atomistic numerical computation. In this ap-
proach we introduce into the Hamiltonian an effective dimensionless parameter which
permits to change the mesh of the calculation in dependence on specific objectives of
the system.

This dimensionless parameter is defined mainly through the coupling constants
of the exchange and the dipolar interaction q = D

J ·a3 with the lattice parameter a.
Without anisotropy and without external field, the scaling parameter a remains the
only free variable: Different ratios D/J can be considered as issued from a single case
with a given q value but with different effective lattice parameters a. Thus increasing
the dipolar coupling D while keeping the exchange coupling J constant amounts to a
mere increase of the effective lattice parameter a. In the usual 3d magnets, the ratio

D
J ·a3

0

is of the order of 10−3...10−4, where a0 is a typical atomic distance in metals. Thus,

for D/J = 0.1, a ≈ 5a0...10a0 and for D/J = 1, a ≈ 10a0...20a0, i.e. the larger values
of D/J correspond to the larger samples and the coarser calculation mesh. With this
method one can look at the structures first with a coarser resolution which requires
less CPU time and afterwards resolve the interesting places more accurately.

The figure 2.1 shows for example a 1 µm large platelet made from a soft magnetic
material as Permalloy possessing several metastable magnetic vortices. Because the
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mesh is large, the internal structure of a vortex cannot be resolved. If the structure is
calculated with a finer factor q, one recognizes immediately that the core of the vortex
has a significant out-of-plane component of magnetization (Fig. 2.2) what has been
recently observed experimentally [26].

 

Figure 2.1: Top-view of a 1µm large soft
magnetic platelet with several metastable
vortex structures. The cores of the vortices

cannot be resolved.

Figure 2.2: Perspective view of a por-
tion of the same, but better resolved sam-
ple. The core of a vortex has a strong out-
of-plane component of magnetization. The
size of the core can be easily determined.

The MC program has been successfully applied for many structural phenomena
such as magnetization reversal [20], domain or vortex formation [21, 22], and spin
reorientation transitions [23–25]. We understand the work with this program as ex-
perimental investigations as the methodology is very similar to that of a real experi-
ment. In the simulations we use magnetic parameters of real 2D systems which permit
certain analogies to experimental results. The aim of the investigations lies not in the
modelling of abstract, theoretical systems, but on the description of the real behavior
of experimentally accessible magnets.

2.3 Spin Reorientation Transition in the first order

anisotropy Approximation

In ultrathin films the configuration of magnetic moments, i.e. the magnetization
configuration, is governed by the balance between dipolar and anisotropy energies.
Due to the long-range order the dipolar energy is minimal when all magnetic moments
compensate each other and the total magnetic charge is equal to zero (so-called pole
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avoidance principle). In order to satisfy this minimum condition the dipolar energy
pushes all spins into the film plane and distributes them evenly. The anisotropy en-
ergy, vice-versa, enforces spins to lie in some preferred directions. One experimental
manifestation of the competition of these two energies is found in the thickness driven
spin reorientation in Co/Au(111) films [17]. In the limit of small thickness the Co has
a dominant perpendicular surface anisotropy which causes a perpendicular magnetiza-
tion orientation. With increasing film thickness the dipolar energy becomes dominant
and the magnetization turns into the film plane. One of the best known analytical
treatment of spin reorientation in a one monolayer film is given in a paper by Yafet and
Gyorgy [11]. The authors have made an extension of an old ansatz [14] introducing
domain walls of finite width. In the analytical description Yafet and Gyorgy find that
close to the transition point domain walls become larger than domains. In this state
the whole film exhibits a wave-like phase. In the region where magnetostatic energy
dominates their theory cannot make any predictions.

We have studied the same kind of reorientation transition by means of computer
simulations of thin magnetic films [23]. The advantage of our method is that we can
deal with the model Hamiltonian without limitations concerning the configuration of
domains and domain walls as in Ref. [11]. We performed an extended Monte-Carlo
treatment of a spin monolayer on a triangular lattice of 100 × 100 effective magnetic
sites with three-component vector spins S of unit length S = 1 . This corresponds to
a surface orthogonal to the c axis of a hcp lattice or to the (111) surface of an fcc
structure. The Hamiltonian of the problem includes exchange, dipolar interactions,
and perpendicular anisotropy (see the Section 2.2.1).

We have performed simulations for three typical values of the ratio 1/q = J ·a3

D
,

namely 1/q = 10, 1/q = 1, and 1/q = 0 (pure dipolar interactions with K1 finite).
In all simulations continuous transitions were found. We focus on the results for
1/q = 10 as the scales for Co/Au(111) (5 nm mesh width and 500 nm sample size) are
best adopted to the microstructures that appear in the spin reorientation transition.

The results are presented as a low-temperature phase diagram in Fig. 2.3. The
averaged values of the vertical component Sz and the squared value S2

z of the magnetic
moment versus f with f = EA/ED as the ratio of perpendicular anisotropy energy
EA to the dipolar energy ED. Usually the MC results are plotted as a function of
K1/ED. As the behavior of the magnetic sample is governed by the total energy we
find normalized energies more convenient. The magnetostatic energy is defined as
the difference between the vertical single domain configuration and a stray field free
vortex structure. This energy and the anisotropy energy is normalized with respect
to the number of moments and used for calculating the f value given in Fig. 2.3. By
this we avoid major effects of shape and size on the graph and obtain a generalized
behavior of the spin reorientation in thin films. Sz and S2

z have been obtained from
the simulations. While S2

z is proportional to the total amount of the structure with
out-of-plane magnetization orientation, Sz reveals information about the occupation
of the two vertical states of magnetization.
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Figure 2.3: (a) Plot of S2
z and Sz versus f . Sz is the perpendicular component of

magnetization and f = EA/ED is the ratio of anisotropy energy to dipolar energy.
The shaded areas separate the phases (A,B,C,D). The phases are characterized by
the different microstructures, which are shown as insets in the diagram. The mi-
crostructures have been obtained for disk-shaped (f ≈ 1.46) and rectangular samples

(f ≈ 1.46) of about 10200 vector spins on a triangular lattice for kBT/J ≈ 0.01.
(b) Perspective view of an enlarged part of the phase B. For clarity, only one row

out of two and one moment out of two in the row are drawn as cones.

Our results are in good agreement with the analytical model [11] within its range
of validity. We obtain, however, a more precise picture of domain size and shape de-
pendence on the ratio f , as no restrictions on admissible domain patterns were made.
In the region where anisotropy energy dominates (f > 1.4) the size of out-of-plane do-
mains is much larger than 500 nm limited by the size of our sample in the simulations.
In the experiment [17] this kind of domains was found in very thin Co/Au(111) films
(1...3.7 monolayers) with strong surface anisotropy. Fig. 2.3b represents the typical
domain structure for the region 1.1 < f < 1.4. The structure is characterized by small
out-of-plane domains with narrow domain walls. The domain size decreases with the
ratio f and reaches domain sizes of 300-400 nm for f ≈ 1.1. Domains of this size
were also found in a certain thickness range when a collapse of domain size was exper-
imentally observed in annealed Co on Au(111) films. At the point f ≈ 1.1 the total
magnetization per spin is zero. This means that the magnetic moments are evenly
oriented in all directions. Fig. 2.4a exhibits a relaxed MC magnetization configuration
at the point where the dipolar energy is equal to the anisotropy energy f = 1.

It is almost the central point of the transition region from out-of-plane to in-plane
configurations (0.8 < f < 1.1). Yafet and Gyorgy reached only f = fmin ≈ 0.99 and
predict there a purely two-dimensional wave-like profile of magnetization with macro-
scopic size of domain walls. We find the cosine-like profile at the same point (Fig. 2.4b).
The profile and shape, however, is more complicated than the predicted 2d structure.
Below f ≈ 1.2 the domain walls become larger, as more and more magnetic moments
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A

A

(a)

(b)

Figure 2.4: Top-view of a 1µm large soft magnetic
platelet with several metastable vortex structures.

The cores of the vortices cannot be resolved.

from the vertical magnetized do-
mains are tilted. It is the beginning
of the formation of vortices. At the
point f = 1 walls meet each other
and form a kind of spiral profile
(Fig. 2.4b). The magnetization ro-
tates in a helicoidal form along all
three principal axes. The structure
formed has been called the twisted
phase. At this particular point
the magnetic moments are evenly
oriented in all directions, which is
characteristic of the twisted config-
uration. This yields S2

z = S2
y =

S2
x = 1/3 for a sample of infinite

extension.

To analyze the stability of the
twisted configuration its energy has
been compared with several in-
plane (vortex, single domain) and
out-of-plane (with different periods
of up and down domains) configu-

rations for f = 1. The numerical values of the energies can be found in the Ref. [23].
The main conclusion is that at that particular point of the phase diagram the twisted
configuration remains the one with the lowest energy among all considered magnetic
states.

In conclusion, consideration of the magnetic microstructure reveals a continuous
character of the SRT in ultrathin magnetic films with the perpendicular anisotropy.
In first-order anisotropy approximation a continuous reorientation transition occurs
from an out-of-plane magnetization to a vortex structure. A new phase, the twisted
configuration, is found as an intermediate structure between these two states. At the
point where the dipolar energy is equal to the perpendicular anisotropy energy the
twisted configuration represents the minimum of the free energy.

2.4 Spin Reorientation Transition in the second or-

der anisotropy Approximation

The importance of higher-order anisotropy contributions for the spin reorientation
transition has been pointed out rather long time ago [27–29] and a phenomenological
magnetic phase diagram in second-order anisotropy approximation has been postulated
[27]. According to those investigations the reorientation can proceed either through
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the canting of magnetization or through the state of coexisting local minima for the
in-plane and the vertical magnetization.

The first option was quoted as a second-order transition or a continuous reorien-
tation. A possible microstructure of those phase, however, has not been considered.
The second kind of transition should proceed via states of ”coexisting phases”. The
reorientation through this path is often classified as a discontinuous or first-order SRT.
The classification is due to the assumptions or the models that are made to explain
the flip of the moment. In the state of coexisting phases both orientations of magne-
tization have local minima. Hence, there is a possibility for the magnetization to be
oriented along one or the other direction. Two models of occupation are commonly
accepted leading to a discontinuous flip, i.e. the ”Perfect Delay” and the ”Maxwell”
convention [30]. Initially in both models the magnetization occupies the state of the
lowest minimum. In the first model the magnetization is believed to stay in that state
until the corresponding minimum of the free energy is completely erased. The second
model assumes that the orientation of magnetization is always determined by the low-
est lying energy minimum. A sudden flop appears at the point where both minima
have equal depth. Both models have been discussed in literature for zero temperature.
In the common discussion of the discontinuous transition neither finite temperature
nor any microstructure has been taken seriously into account.

2.4.1 The Phase Diagram

To clarify the question about the magnetic microstructure of the SRT in the second
order anisotropy approximation we have recently performed a spatially resolved anal-
ysis of the magnetization reorientation in the framework of competing dipolar, first-
and second-order contributions of the perpendicular anisotropy (see Chapter 2.2.1) for
a given exchange coupling [24, 25]

H = −J
∑

<ij>

Si · Sj + D
∑

ij

(

Si · Sj

r3
ij

− 3
(Si · rij)(Sj · rij)

r5
ij

)

+ K1

∑

i

sin2 θ + K2

∑

i

sin4 θ . (2.4)

As in the previous Chapter the SRT will be discussed in the appropriate anisotropy
space. For the sake of simplicity the diagram is given by Keff

1 - the difference between
first-order anisotropy K1 and demagnetizing energy density or shape anisotropy ED

- and the second-order anisotropy energy density K2 (Fig. 2.5). Thus, Keff
1 takes

the magneto-static energy contribution into account. ED is taken as the magneto-
static energy of an infinite film, i.e. 2πM2

S. We want, however, to strengthen that
in the simulations the magneto-static energies are calculated exactly while the phase
diagram helps to make the presentation of the findings clearer. For positive Keff

1 and
K2 vertical magnetization is favored while negative values cause an in-plane state (see
Eq. 2.4).
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In the region of ”vertical” magnetization (Fig. 2.5), for positive Keff
1 and K2 >

−1
2
Keff

1 , we find the following microstructure. For large Keff
1 the vertically magnetized

w

w
K

2 =-1/2 K
1 eff

K2

0.5ED-0.5ED

ED

-ED

canted

vertical

coexistence

in-plane

twisted eff
1 1 DK =K -E

Figure 2.5: Micromagnetic phases of a monolayer of classical magnetic moments in the
anisotropy space (second-order uniaxial anisotropy approximation) after Ref. [27, 31]. Keff

1

is the difference between first-order anisotropy and demagnetizing energy density Keff
1 =

K1 −ED, K2 is the second-order anisotropy density. The lines K2 = −1
2Keff

1 and Keff
1 = 0

separate vertical, canted, in-plane and coexistence phases (see text).

domains are very large. With Keff
1 decreasing the domain size shrinks and the domain

walls become broader. This result is similar to the findings in first-order anisotropy
approximation [11, 23]. If K2 is large the domain size and the domain wall width are
mainly determined by K2. The trend is that the stronger the second-order anisotropy
the narrower are the domain walls and the larger are the domains. In the close vicinity
of Keff

1 = 0 with non-vanishing K2 the wall width is finite in contrast to the infinite
sinus-like profile of magnetization in the first order anisotropy approximation. This
means that K2 substitutes K1 in the definition of wall width and energy. For Keff

1 = 0
and K2 = 0 the twisted phase described in the Chapter 2.3 is formed.

For negative Keff
1 and K2 < −1

2
Keff

1 (region ”in-plane” in Fig. 2.5), the vertical
magnetization vanishes and a complete in-plane orientation of the magnetic moments
exists. To minimize the magneto-static energy vortex structures form as the magnetic
anisotropy in the film plane was set to zero. In the ”in-plane” region K2 has only minor
influences on the microstructure compared to the former situation with Keff

1 > 0.
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In the following we will discuss situations where the microstructure is strongly
dominated by the interplay of Keff

1 and K2.

2.4.2 Canted Phase

At first for Keff
1 < 0 and K2 > −1

2
Keff

1 (inset ”canted” in Fig. 2.5) the negative

Keff
1 competes with the positive K2. The energy minimization requires canting of the

magnetization to the film normal [10, 27–29, 31, 32]. In fact we find the canting of
magnetic moments in the simulation (Fig. 2.5). The vertical component of magne-
tization changes continuously from 1 at Keff

1 = 0 to zero at K2 ≈ −1
2
Keff

1 . In the
literature this phase is called ”cone-state” as it is generally assumed that the canted
magnetic moments are distributed uniformly on a perimeter of the base of a cone with
no preferred direction of the in-plane components. We find, however, that the canted
magnetic moments form domains with in-plane components oriented along the princi-
pal directions in the lattice plane although the in-plane anisotropy was set to zero. The
principal axes of the triangular lattice become the in-plane easy-axes of magnetization
due to the dipolar interaction [33]. We may conclude that in the canted phase the
ferromagnetic system is already affected by negligibly small in-plane anisotropies. The
in-plane anisotropy causes the appearance of domains with magnetization components
along distinct in-plane directions.

A top-view of the domain structure in the canted regime is presented in the Fig. 2.6.
In Fig. 2.6(a) different shades of gray represent different orientations of the magnetic
moments in the film plane. In Fig. 2.6(b) the different shades of gray give the up-
and down- components of magnetization. The frequency distribution of the in-plane
component of magnetization in the down-canted domains is given in Fig. 2.6(c). It
demonstrates that two main in-plane orientations of the magnetization (around 240◦

and 120◦) appear. For the vertical component the frequency histogram Fig. 2.6(d)
reveals that the angle to the film normal is identical for all moments in the domains.
The angle is equal to the value one obtains from the analytical treatment in case

of 0 ≤ −1
2

Keff
1

K2
≤ 1, i.e. θM ≈ arcsin

√

−Keff
1

K2
. The small amount of deviating

orientations is found in the domain walls. A three-dimensional representation of the
magnetic moments is given in Fig. 2.6 (right). Hence, a continuous reorientation
transition through the phase of canted domains occurs. In this region K2 has a strong
influence on the microstructure of magnetization.

2.4.3 Coexisting Phases

The third possible path for the reorientation of the magnetization proceeds via the
forth quadrant of the anisotropy space (Keff

1 > 0, K2 < 0).
In this region (inset ”coexistence” in Fig. 2.5) we find that the average vertical

component of magnetization goes gradually from almost unity above K2 = −1
2
· Keff

1

to zero at Keff
1 = 0. This continuous change of the magnetization component can lead
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Figure 2.6: Top-view (left) and perspective view (right) of a portion the magnetic mi-

crostructure in the canted phase for Keff
1 = −0.4ED, K2 = 0.65ED and kBT/J = 0.05.

(a) shows a top-view of the microstructure. In this image the in-plane component of
magnetization is coded in gray. Light-gray color gives the part of the sample with an
in-plane component pointing mainly to left or right in the plane of drawing (azimuthal
orientation of 0◦ or 180◦). Dark-gray color indicates the regions having the in-plane com-
ponents of magnetization at the angle of 60◦ or 240◦ to the horizontal within the plane
of drawing. (b) gives the out-of-plane components of magnetization in the same sample.
Dark and light-gray arrows represent canted-down and canted-up domains correspond-
ingly. (c) exhibits the frequency distribution of the in-plane component of magnetization.
The abscissa gives the angle of the magnetization to the horizontal within the plane of
drawing. (d) displays the frequency distribution of the out-of-plane component of the
magnetization. The abscissa gives the component of the magnetization along the normal.

to the erroneous conclusion that the reorientation proceeds via the canting of mag-
netization. The canting phase, however, does not exist in this part of the anisotropy
space. We find in the simulation a magnetic microstructure that consists of domains
magnetized perpendicular and in-plane, i.e. a coexistence of the two phases (histogram
Fig. 2.7b). The domain walls cause the small amount of moments with deviating ori-
entation. Hence, the very existence of two local minima in the free energy leads to the
appearance of domains with vertical and in-plane orientation of magnetization. This
result rules out the models discussed in literature for T = 0 K, i.e. ”Perfect delay”
and ”Maxwell” convention [30].

In our simulations we find an increase/decrease of the in-plane/vertical domains
size with decreasing Keff

1 . This means that the frequencies of population of the two
phases of magnetization depend on the ratio Keff

1 /K2. A top-view of the microstruc-
tures of the state of coexisting phases is presented in Fig. 2.8. Fig. 2.8(a) represents the
situation where the vertical magnetization is favored which leads to the preponderance
of vertically magnetized domains. On a first glance the in-plane domains could be mis-
leadingly interpreted as walls. The magnetization profile, however, deviates completely
from that of a domain wall. While in the wall a continuous tilting of the magnetiza-
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Figure 2.7: Microstructure
of the state of coexisting
phases for Keff

1 = ED, K2 =
−0.8ED and kBT/J = 0.05.
(a) Perspective view of an en-
larged part of the sample. For
clarity only one row out of
two and one moment out of
two in the row are drawn as
cones. (b) Frequency dis-
tribution of the magnetiza-
tion orientation. The popu-
lation frequency is given as a
function of the magnetization
component along the normal.
The plot is generated from the

simulation shown in a.

tion is expected we find that all spins lie in the film plane except for a thin region,
i.e. wall, along the domain contours (Fig. 2.8a). The walls are not exactly described
in our simulations as the mesh size is too large. If the in-plane orientation is more
favorable (deeper minimum) an in-plane vortex-like structure appears (Fig. 2.8(b)).
The vortex-structure is a consequence of minimization of the magneto-static energy
as no in-plane anisotropy is assumed. The vertical domains remain in the core of the
vortices and at the sample edges. Again the continuous transition between adjacent
phases is achieved via the microstructure.

The multi-domain state of the coexisting phase transforms into a single domain
state when the sample size is smaller than the typical domain size for a given Keff

1 /K2.
In that situation the ratio of Keff

1 /K2 defines the probability to find the sample in
a vertical or an in-plane magnetized single domain state. The domains with in-plane
magnetization do not show vortex structure in small samples. The mono-domain
configuration is energetically preferred as the gain in the dipolar energy is lower than
the loss in the exchange energy for small structures.

In conclusion, a strong influence of the second-order perpendicular anisotropy on
the microstructure of the spin reorientation transition is found. For K2 > 0 the tran-
sition via a canted domain structure is established that yields the smooth, continuous
connection between the vertical domain structure and the vortex structure with in-
plane magnetization. For K2 < 0 a continuous reorientation via a state of coexisting
vertical and in-plane magnetized domains occurs. The sizes of the vertical and the
in-plane domains depend on the ratio of Keff

1 and K2. The spatial arrangement of the
domains can change with time, while the frequency distribution of the in-plane and
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Figure 2.8: Top-view of the microstructure of the state of coexisting phases and corre-
sponding energetic potential. Dark- and light-grey areas represent spin-up and spin-down
domains correspondingly. Black arrows show the in-plane domains, kBT/J = 0.05. In (a)

the situation of a deeper minimum for the vertical phase (K2 = −0.8Keff
1 ) is shown. The

region between the vertical domains are in-plane magnetized domains. (b) exhibits the mi-
crostructure for the situation that the energy minimum for the in-plane phase is deeper
(K2 = −1.1Keff

1 ). Note that vertical domains remain at the edges and in the center of
domains with ”rotating” in-plane magnetization. They will shrink to the center of vortices

found in the in-plane phase.

the vertical phases is invariable.

2.4.4 Theory versus Experiment

The experimental investigation of the SRT mechanism requires microscopic infor-
mation about the magnetic domain structure. Different experimental techniques have
been used for the imaging of magnetic domains within the SRT. These are photoelec-
tron emission microscopy (PEEM) with x-ray magnetic circular dichroism (XMCD)
[34], spin-polarized low-energy electron microscopy
(SPLEEM) [35, 36], scanning electron microscopy with polarization analysis (SEMPA)
[16, 17, 37], magnetic force microscopy (MFM) [38], scanning tunneling microscopy
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with spin polarization analysis (SPSTM) [39]. The different kinds of SRT have been
also studied by surface integrating methods like magnetooptical Kerr microscopy
(MOKE) [40, 41], magnetic torque magnetometry [42] or Brillouin light scattering
(BLS) measurings [43].

The experimentally studied domain structures agree in many aspects with the-
oretical predictions. So, domains of sizes predicted in [23, 25] have been experi-
mentally observed close to the reorientation transition in annealed Co/Au(111) films
[16, 17, 37]. The borderlines of the phase of coexisting domains in the calculations are
in good agreement with the experimentally defined borders of the ”gray” zone of SRT
in Co/Au(111) [37].

Experimental evidence of canted and coexisting domains predicted theoretically
in the second order anisotropy approximation [24, 25] has been recently revealed in
Co/Au(111)/W(110) and Fe-Co on Au(111) [35]. The coexisting domains have been
also found in Fe grown on Cu/Si(111) [38]. The continuous rotation of the magneti-
zation from out-of-plane to in-plane through the domain structure where the magne-
tization is canted has been reported for Cu/Ni/Ci/Si(001) films [42, 43].

2.5 Size-dependent Spin Reorientation Transition

Magnetism at small length scales has lately attracted considerable scientific atten-
tion. Interesting physical phenomena occur in magnets with all three dimensions on
the nanometer scale. An array of such magnetic particles can potentially provide a
huge gain in information storage density [44]. Hence, the understanding of the mi-
cromagnetic ordering in ultra-low-dimensional objects is of high significance for the
fundamental physics of magnetic materials as well as for technological applications.
The increased ratio of boundary to non-boundary atoms in such structures can lead
to unusual physical phenomena.

2.5.1 The Shape Anisotropy of Nanoplatelets

The calculation of the shape anisotropy (see Chapter 2.2.1) has been performed for
spheroidal or prismatic samples in the approximation of a continuum magnetization
[45, 46]. The derived demagnetizing factors depend on a geometric ratio k, which
is for example given by the thickness-to-diameter ratio L/t of the sample shape. In
continuum approximation ED deviates from unity only for structures where L and t
are comparable.

It has been proposed that the model of a continuum magnetization is no longer
valid when the film thickness is reduced to a few atomic layers [47, 48]. In this case
the system is treated as a collection of discrete magnetic dipoles, which are arranged
on a crystalline lattice. Calculations of the shape anisotropy have been performed for
infinite large ultrathin films, and a deviation from the continuum magnetization model
was found for films thinner than 16Å. The consideration of a discrete magnetization
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yielded a reduced stray field energy for perpendicular magnetization of ultrathin films
as compared to thick films, and the magnitude of deviation depends on the lattice
type [47].

Recently, we have numerically calculated the shape anisotropy of structures with
a limited lateral size [49]. Analytical approximations of the results [49] have been
provided [50]. The platelets were discs of finite diameter L and thickness t on a
discrete lattice. Diameter-to-thickness ratios k = L

t
, ranging from 40 to 1000 with

the thickness ranging from 1 to 6 monolayers as well as different crystal arrangements
(sc[100], bcc[110], bcc[100], fcc[111], fcc[100], hcp[0001])were considered. The shape
anisotropy (dipolar magnetic anisotropy energy) has been calculated as the difference
between the dipolar energy of the vertical and the in-plane single domain state: ẼD =
ED(⊥) − ED(‖).

~

Figure 2.9: Numerically calculated demagnetizing energy density △ẼD as a function of
the dimensional aspect ratio k = L/d for 1-4 monolayer films on a triangular lattice with
hcp stacking. △ẼD is normalized with respect to the demagnetizing energy in the contin-
uum limit 2πM2

S . The straight horizontal line corresponds to the perpendicular magneto-
crystalline anisotropy EA. The dashed vertical lines denote the critical size kC of the reori-

entation.

The results of the calculations for a triangular lattice with hcp stacking are shown
in Fig. 2.9 as a function of k = L/t for 1-4 ML thick films. The calculated energies
are normalized with respect to 2πM2

S. For other lattices similar results were obtained.
The exact calculation of the dipolar sums deviates strongly from the magneto-

static energy obtained from the continuum ansatz (Fig. 2.9). Instead of a unique
ẼD(L/t) function we obtain different curves for different sample thickness. Thus, the
shape anisotropy of discs with diameters of several hundred lattice constants and a few
atomic layers thickness (nanoplatelets), depends on both size L and thickness t, and not
just simply on the ratio of the two parameters. For example, ẼD(L/t) of the platelet
100× 1 on a hcp lattice is 1.2 times smaller than that of the platelet 300× 3, although
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k = 100 is the same for both objects. A remarkable result of those calculations is
that the size effect already comes into play for rather large monolayer platelets of
a few hundred atoms in diameter, and not only for situations where L/t = 1. For
t > 5 ML ẼD(k, t) merges into ED = f(k). In all of these cases, the limit of infinite
lateral dimensions was studied and the results of previous studies [47, 48, 51] have
been retrieved.

A non-trivial step was then taken and the rather individual curves, corresponding to
the different thicknesses at ”fixed” structure, were normalized against the value for the
dipolar magnetic anisotropy energy (MAE) 2πM2

S of the laterally infinite sample. It
was then established [49] that all these individual curves collapsed to a single, and thus
universal, curve whose precise appearance depended on the ratio k of the cylindrical
island only. This universal curve for the rescaled dipolar MAE was compared to the
one for the dipolar MAE of an ellipsoid of revolution [49] and the disc [50] with the
same aspect ratio in the continuum micromagnetic approximation (see, e.g., Ref. [45]).
Deviations were established and the conclusion was made that the dipolar sum can
be separated into two contributions: thickness- and geometry-dependent parts. The
geometry-dependent demagnetizing factors found by means of the discrete summation
are identical to those found in continuum approximation [50]. It was pointed out that
the combination of these two effects in nanoplatelets could be especially dramatic for
ultrathin systems with a spin reorientation transition [49].

2.5.2 Spin Reorientation Transition

The magnetic anisotropy is a local property and constant for a given thickness.
Thus, it can be represented by a straight line in Fig. 2.9. The intersection of ẼD(k, t)
and EA gives a critical length LC = kC ·t where the magnetization orientation switches,
i.e. reorientation appears. As the shape anisotropy in ellipsoid approximation deviates
from unity only at k ≈ 1 the reorientation can happen only at L ≈ t (Fig. 2.9). Thus, it
is commonly assumed that the orientation of magnetization in structures with L >> t
depends only on the thickness and the temperature of the sample.

However, the shape anisotropy of nanoplatelets, according to the investigations [49,
50], is reduced for certain lattice symmetries. The reduction of ẼD(k, t) should lead
to an enhancement of the effective perpendicular anisotropy Eeff = EA − ẼD(k, t)
with shrinking size and, hence, to the increase of the LC . For certain range of EA the
critical size LC of the reorientation can be very large compared to the film thickness.

Monte-Carlo simulations have been performed to check how the discreteness of
the lattice reflects in the orientation of the magnetization [52]. In an extension of
the earlier work [49], noncollinear spin states due to thermal disorder have been
considered, and the temperature-driven magnetic reorientation is discussed in view of
the different temperature dependence of dipolar and magnetic anisotropy energies.

The Hamiltonian of the problem includes exchange, dipolar interactions and per-
pendicular anisotropy of the first order: H = ξex+ξD +ξA. The ratio D/J ≈ 10−3 used
in the calculations corresponds to real materials. Hence, no rescaling of the sample size
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has been used. For the chosen D a single-domain magnetization configuration in the
samples is expected. In that case the exchange energy for in-plane and out-of-plane
configurations is identical and the magnetization orientation is fully described by the
competition between ED and EA.

The low-temperature magnetic microstructure in samples of sizes 100a ≤ L ≤
350a, where a is the lattice parameter, have been investigated. Thus, the lateral size
of the platelets has been chosen to be much larger than the thickness t (L > 100t). A
wide range of the total anisotropy energy has been explored. Here the case where EA

is slightly smaller than 2πM2
S, i.e. EA ≈ 0.9 · 2πM2

S is described. In the continuous
ellipsoid approximation the selected sizes and anisotropy let expect any shape effects
to become effective at LC ≈ 20t. Hence, in all calculated structures with L > 100t an
in- plane magnetization configuration should be expected.

Figure 2.10: The low temperature magnetic mi-
crostructure of two discs on triangular lattice with,
L1=100 and L2=330; EA = 0.9(2πM2

S). The ex-
change, the anisotropy, the dipolar energy constants
and the temperature are identical for both samples.
For the sake of an appropriate representation a per-
spective view of an enlarged part of each sample
is shown. For clarity, only one spin row out of
two is drawn as cones. The smaller island has a
vertical single-domain structure. The larger struc-
ture presents an in-plane single-domain magnetiza-

tion configuration.

In contrast to the predictions
made in the framework of the con-
tinuum approximation a vertical
monodomain state in the case of
objects with L < 230t on a tri-
angular lattice is found (Fig. 2.10,
left). In case of L > 300t an in-
plane configuration of magnetiza-
tion exists (Fig 2.10, right). For
230t < L < 300t structures with
an intermediate values of vertical
component of magnetization have
been revealed. For the square lat-
tice the results are completely dif-
ferent. We find for all structures
with L > 100t an in-plane single
domain in accordance with the el-
lipsoid approximation.

By comparison with the trian-
gular lattice we see that the crit-
ical size of the reorientation LC

depends on the type of the crys-
talline lattice. According to [49]
the shape anisotropy of a triangu-
lar lattice with hcp or fcc stacking
is strongly reduced, while ẼD(k, t)
of a square lattice with sc stack-

ing is almost equal to that of continuum. Thus, in contrast to the analyt-
ical assumption and in accordance with the numerical approach [49] the crit-
ical size of the reorientation LC depends on the type of the crystalline lat-
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tice and in some cases takes place far beyond the k-range deduced from
the ellipsoid approximation. Another important conclusion is that the magnetization
direction can change by shrinking the lateral size without changing parameters like
thickness or temperature.
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Figure 2.11: Comparison of the demagnetizing
ẼD(k, L) and the anisotropy EA energy of disc on
a triangular lattice as a function of size for strictly
collinear and relaxed solutions. All energetic param-
eters J , D, K1 are identical in both cases. The energy
is normalized with respect to 2πM2

S , kT/J = 0.05,
D/J = 10−3. The vertical lines denote the critical
sizes LC1 and LC2 of the magnetization reorientation

for collinear and non-collinear configurations

The demagnetizing and the
anisotropy energy of non-collinear
due to the thermal agitations MC
configurations have been studied
by taking advantage of the Monte-
Carlo scheme that permits the
introduction of temperature ef-
fects into the calculations in [52].
Fig. 2.11 gives ẼD(L) and EA(L) of
platelets on a triangular lattice for
strictly collinear and relaxed solu-
tions.

Generally, the dipolar and the
anisotropy energy of the relaxed
solution are smaller than those of
the collinear case due to the ther-
mal disorder. Interestingly, the
anisotropy energy of the MC con-
figurations is no longer a constant,
but is size dependent. As a con-
sequence LC is shifted to smaller
sizes with respect to the collinear
case (Fig. 2.9). However, the crit-
ical size of the reorientation is still
dependent on the lattice type and can be very large comparably to the thickness of
the sample. This indicates that the size-dependence of the reorientation transition in
discrete lattices is not due to the shape effect of the continuous model that depends
on the ratio of the object dimensions. The effect found for the monolayer example
may be even more pronounced in thicker samples due to the thickness dependence of
the demagnetizing energy of a platelets on a discrete lattice [49].

For EA ≈ ẼD(continuum) the size-dependent reorientation of magnetization will
appear only in the platelet on a square lattice. The magnetization of a nanoplatelet
on a triangular lattice will be always out-of-plane as the maximal possible shape
anisotropy of a sample is smaller ẼD(L → ∞) ≈ 0.91 · 2πM2

S. The effective per-
pendicular anisotropy of a triangular lattice, however, will increase due to the shape
and the lattice dependence of ẼD(k, t). This is sometimes erroneously interpreted as
the increase of Perpendicular Magnetic Anisotropy with shrinking size, as ẼD(k, t)
is commonly assumed to be constant. First experimental findings pointing into this
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direction have been published recently [53].

In conclusion, we demonstrate that in laterally confined ultra-thin magnetic struc-
tures the magnetic behavior depends on the type of the lattice and the sample size.
As a consequence, the spin reorientation transition in small platelets of identical
shape on different lattices occur at different sizes for identical anisotropy energy. For
ẼD(k, t) < ẼD(L → ∞) the reorientation from an in-plane configuration for larger
sizes to an out-of-plane configuration below a critical size LC occurs. LC can be
very large compared to the film thickness.We have shown that an enhancement of the
effective perpendicular anisotropy Eeff can occur with shrinking size.

2.6 Dipolar Magnetic Anisotropy: Multiplicative

separation of discrete and continuum contri-

butions

To check previous numerical results concerning the separation of the total de-
magnetizing energy in the discrete and the continuum contribution the analytical
formulae for the demagnetizing factors of circular cylinders has been derived [50].
New closed-form analytic expressions for the demagnetization factors Naxial(k) and
Ndiam(k) =

[

1 − Naxial(k)
]

/2 for the right circular cylinder in the usual micromag-
netic sense, i.e. in the continuum limit of micromagnetism, have been obtained. The
expression for Naxial(k) is listed below

Naxial(k) = 1 +
4

3π
k − 2F1(

5
2
, 1

2
; 2; k2

1+k2 )√
1 + k2

. (2.5)

There is no need to tabulate this function, because the hypergeometric Gauss
function 2F1(a, b; c; z) is built-in into widely spread computer-algebra packages and is
actually a shorthand notation for an infinite convergent series. In the context of very
flat cylinders, as is the case for the ultrathin-film cylindrical platelets, large values
of k ≫ 1 are of interest. Although the relevant results based on calculations of the
inductance of cylindrical coil have been available for quite some time now [54], the
formula provided under Eq. 2.5 is the first time that the demagnetization factors of
the saturated zero-susceptibility cylinders are expressed in terms of the hypergeometric
function. Notably, it covers the whole range of possible values of k (0 < k < ∞); in
particular, one does not need to examine separately the thin (long) as opposed to the
flat (short) cylinder.

From this, we have obtained straightforwardly the dipolar magnetic anisotropy
energy density (shape anisotropy) depending solely on the shape of the cylinder as
specified by the geometric ratio k = d

t
= diameter to thickness. The expressions are

superior to the usually quoted formulas in terms of the complete elliptic integrals. The
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very important finding is that

∆Edipolar(discrete)

X
= ∆Edipolar(continuum) = S(k) (2.6)

to within a very high accuracy (the small deviations in the third digit of the discrete
result are certainly a numerical artifact) in agreement with the numerical results [49].
Equivalently, the identity of the two quantities can be established by comparison of
Ñ(k) and of

[

3Naxial(k) − 1
]

/2 . The function S(k) is a universal function of the
geometry ratio. At this stage, it has been proven that the following form holds for the
discrete mesoscopic system:

∆Edipolar(discrete) = X({lattice}, t)S(k)
µ0M

2
S

2
. (2.7)

Altogether, it has been shown that the exact finite summation of the dipolar sums
for an essentially discrete dipole lattice, as is encountered in experimental situations
in ultrathin ferromagnetic platelets, leads to a clear delineation of the validity of the
micromagnetic continuum ansatz and the quantitative way in which the discreteness
of the lattice bears on the final result for the MAE density.

2.7 Summary

A microstructure of thickness- and size-driven spin reorientation transition in ul-
trathin films and nanostructures has been discussed. It has been demonstrated that
the results of numerical Monte-Carlo investigations showed an astoundingly good
correspondence with recent experiments and led to a microscopic understanding of
the spin reorientation transition in the first- and the second-order magnetocrystalline
anisotropy approximation.

It has been demonstrated that in first-order anisotropy approximation a continuous
reorientation transition occurs from an out-of-plane magnetization to a vortex struc-
ture. At the point where the dipolar energy is equal to the perpendicular anisotropy en-
ergy a new phase, the twisted configuration represents the minimum of the free energy.
The second-order perpendicular anisotropy strongly influences the microstructure of
the spin reorientation transition. For K2 > 0 a transition via a canted domain struc-
ture is established that yields a smooth, continuous connection between the vertical
domain structure and the vortex structure with in-plane magnetization. For K2 < 0
a continuous reorientation via a state of coexisting vertical and in-plane magnetized
domains occurs. The sizes of the vertical and the in-plane domains depend on the
ratio of Keff

1 and K2. The spatial arrangement of the domains can change with time,
while the frequency distribution of the in-plane and the vertical phases is invariable.

It has been shown by means of strict calculation of the dipolar lattice sums that the
shape anisotropy of ultra-thin magnetic nanoplatelets differs from that of continuum
ellipsoid- approximation. The superposition of thickness- and improved shape-effect
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leads to a new phenomenon: size-dependent reorientation of magnetization. Critical
size of the reorientation can be very large compared to the film thickness.



Chapter 3

Anisotropic Domain Walls in
Magnetic Nanostructures with
Perpendicular Anisotropy

3.1 Introduction

The microscopic and macroscopic physical properties of a magnet - hysteresis,
magnetotransport and magnetooptical properties, excitation spectrum etc. - in many
respects are determined by the configuration of magnetization [55–58]. Therefore, mag-
netic ordering on different length scales is one of the central questions of magnetism.
Magnetic domains play an especially important role for the physics of magnetism. The
understanding of the influence of the domain structure on the magnetic behavior in
nanomagnets is of high significance for the fundamental physics of magnetic materials
as well as for technological applications.

The size of domains in magnetic systems on all length scales is driven by the
competition between the magnetocrystalline, the shape anisotropy, and the exchange
energy. For given energetic parameters (and therefore a given domain size) a system
may gain some additional energy which aligns the domain walls in one or in another
crystallographic direction. The optimum orientation of domain walls in bulk materials
is determined by the minimization of the magnetocrystalline and magnetostatic energy
density [59]. As the walls in that case are planes a ”wrong” orientation of a wall can
lead to significant losses in the anisotropy energy and/or to significant stray fields. In
laterally confined nanomagnets the magnetic shape anisotropy comes into play [60]. We
take as example a thin rectangular magnetic sample shown in Fig. 3.1. If the density
of domain walls is low the orientation of the walls is governed by a minimization of
the total wall length, i.e., the walls should generally be oriented perpendicularly to
the sides of a rectangle. If the wall density is high, the total length of the walls is
almost identical for the longitudinal and the polar orientations. Therefore, the least
energetically costly solution is to orient the domain walls either parallel to the long

27
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Figure 3.1: Schematic representation of two possible orientations of Bloch domain walls
in a magnet of rectangular shape with perpendicular anisotropy for high wall density. The
white regions are domains, the light grey regions - walls. The arrows give the orientation

of magnetization. The dark grey areas denote uncompensated magnetic poles.

side of the rectangle, or concentrically. This is since such configurations will lead to
a minimization of free magnetic poles on the sides of the sample [60] (see Fig. 3.1).
Hence, as for high as for low wall density the orientation of domain walls is strongly
dependent on the shape of a magnet. If the magnet as a whole will be rotated the
domain walls should rotate together with it in order to preserve the relative orientation.
An exciting question is whether the orientation of domain walls in the ultrathin film
limit obeys the same principles?

3.2 Experiments

One experimentally accessible and, for future applications, very perspective geo-
metrical shape is a so-called nanowire - a quasi one-dimensional structure of infinite
length and lateral dimensions on the nanometer scale. The nanowire geometry is par-
ticularly advantageous for the investigation of the orientation of domain walls as it has
very strong shape anisotropy, i.e., similarly to the previous example the walls should
generally be oriented perpendicularly or parallel to the sides of a wire depending on
the wall density. In many cases the wall density in turn can be tuned by the width of
the wires [61]. The narrower the wires the lower the density of walls.

For many experimental systems, e.g. Fe/Cu(100), the shortest wall-path coincides
with one of the crystallographic axes which makes it impossible to distinguish between
the role of the lattice for the domain formation and other effects. Only if the shortest
distance is different from all principal axes of a lattice can the mechanism underly-
ing the orientation of the domain walls be revealed in case of a small wall density.
A suitable and experimentally well-studied model system are double layer (DL) Fe
nanowires on stepped W(110) [61, 62] being characterized by perpendicularly magne-
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Figure 3.2: (a)Topography and (b)-(d) dI/dU maps of of 1.7 ML Fe/W(110) at different
local miscut orientation. (a) and (b) were recorded simultaneously. The lateral scale is the
same in all images. In all cases, domain walls (white lines) are oriented along [11̄0], regardless
of the orientation of the nanowires. Parameters: U = 5 mV, I = 0.5 nA, T = 75 K (b, c)

and 120 K (d).
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tized domains separated by domain walls. Fe/W(110) nanowires are extending along
the substrate step edges. As the step edges of the W-surface can have different crys-
tallographic orientations the spatial orientation of the magnetic nanowires can also be
different.

Scanning tunneling microscopy on areas with different local miscut orientations
[63] reveals that the domain walls do not show conventional behavior, i.e. they do not
rotate together with wires but are always oriented along the [11̄0] direction, regardless
of the orientation of the nanowires [63] . Figure 3.2 shows the topography (a) and
maps of differential tunneling conductance (b-d) of 1.7 ML Fe/W(110). While the
dI/dU map of Fig. 3.2(b) has been measured simultaneously with and at the same
position as the topographic image, the dI/dU maps of Fig. 3.2(c) and (d) show other
areas of the same sample which exhibit different local miscut orientations. The maps
of the differential tunneling conductance correlate with the local density of states
directly under the tip and provide information about the magnetic polarization of
the sample. The double layer nanowires shown in Fig. 3.2(a,b) extend approximately
along [001], the ones in Fig. 3.2(c) along [11̄0], while in Fig. 3.2(d) the wire direction
is intermediate, roughly along [11̄1]. Due to unequal diffusion energies the Fe stripes
grow smoothest along [001] and least smooth along [11̄0]. After initial pseudomorphic
growth the high tensile strain starts to relax by insertion of dislocation lines in the Fe
double layer which run along the [001] direction. These are imaged as narrow black
lines in the dI/dU maps. The double layer nanowire has a periodic magnetic structure
with out-of-plane domains alternatingly magnetized up and down. These domains are
separated by 180◦ in-plane domain walls, which are imaged as white lines in this
experiment. The typical distance between adjacent walls is 23± 2 nm [61]. Regardless
of the direction of the nanowires the domain walls run along the [11̄0] direction, i.e.,
perpendicular to the dislocation lines. As a consequence, the domain walls within
the nanowires are infinitely long in the case of Fig. 3.2(c) (disregarding interruptions
due to structural imperfections), and very short in case of Fig. 3.2(b) where they run
perpendicular to the axis of the nanowire. More than that, the predominant [11̄0]
direction is not even a principal direction of an ideal bcc-lattice as it does not coincide
with the primitive vectors of the bcc-structure. This anisotropic behavior can be found
as in the regime of the high wall density as for the low density of domain walls.

Another experimental system with perpendicular magnetization for which an
anisotropy in the domain wall orientation was observed in the ultrathin limit is
Co(0001) films grown on a Mo(110) buffer [41]. The preferred domain wall direction
has been found to be parallel to the [001] direction of the Mo buffer which corresponds
to the [112̄0] axis of the hcp-Co. In many other ultrathin systems, e.g. Co/Au(111) a
completely isotropic distribution of domain wall orientations has been reported [37].

Thus, the orientation of domain walls in ultrathin nanomagnets is at variance to
their mesoscopic and bulk counterparts and at first glance seems to be rather perplex-
ing. While in ultrathin Fe/W(110) and Co(0001)/Mo(110) magnetic structures the
walls are anisotropic, they are fully isotropic in Co/Au(111) films in the same thick-
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ness range. In addition, the anisotropy in the wall orientation cannot be explained
by the minimization of the shape anisotropy as the orientation of walls is indepen-
dent of the orientation of a nanomagnet. In the following a systematical analysis of
orientational wall dependency in nanomagnets on different lattice structures will be
presented.

3.3 Theoretical Analysis: Isotropic Exchange

Integral

To gain understanding of the unusual adherence of magnetic walls to certain crys-
tallographic directions in Co/Mo(110) and Fe/W(110), and of the complete disregard
of the crystallographic symmetry by these walls in Co/Au(111), Monte Carlo simula-
tions and phenomenological analysis have been performed of the orientation of domain
walls in ultrathin films with different atomic symmetries and perpendicular magnetic
anisotropy [63, 64]. In the first set of calculations the exchange constants between all
pairs of nearest neighbors are supposed to be identical.

3.3.1 Monte-Carlo Simulations

The Monte Carlo (MC) description of the magnetic ordering is fully stochastic. It
is based on minimization of a system Hamiltonian by performing statistical sampling
experiments on a computer. In the popular Metropolis algorithm during one MC step
every magnetic moment tries to make a rotation into a new, randomly determined
orientation. This new orientation is accepted or rejected on the base of the Boltz-
mann probability [65]. A properly equilibrated MC system satisfies the fluctuation-
dissipation theorem. Hence, the temperature effects are naturally included in the
calculations. Modern MC computational schemes are able to describe large systems
consisting of many tens thousands of atoms [3, 4, 23, 58, 60, 66, 67]. The long-range
magnetostatic interactions and all kinds of anisotropy can be incorporated into the
model Hamiltonian with reasonable efforts. A large advantage of the MC approach is
that a discrete lattice structure of a specific material can be introduced into the cal-
culations. Introduction of lattice symmetry provides a unique opportunity to account
for the effects arising from the discrete nature of matter [23–25]. Due to these advan-
tages MC simulations have been successfully applied for many structural phenomena
such as magnetization reversal, domain or vortex formation, and spin reorientation
transitions [23–25]. Since magnetic ordering is a complicated many-body problem,
driven by minimization of the total energy, this method is extremely powerful for the
description of magnetic domain structures.
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The system Hamiltonian reads:

H = −
∑

<i,j>

J[hkl] Si · Sj

+ D
∑

i,j

(

Si · Sj

r3
ij

− 3
(Si · rij) (Sj · rij)

r5
ij

)

(3.1)

+ k1

∑

i

sin2 θ + k2

∑

i

sin4 θ

− kp

∑

i

sin2 θ cos2 (ϕ − β) ,

where J[hkl] denotes the effective nearest neighbor exchange coupling constant along
different bonds, D is the dipolar coupling parameter, θ and ϕ are the spherical angles
and rij the vector between sites i and j. The coefficients k1 and k2 are the first- and
second-order anisotropies per atom, respectively. kp is an in-plane anisotropy per atom.
The in-plane anisotropy can have any angle β with respect to the x-axis. For the MC
computations one or two layers of classical, three-dimensional magnetic moments S
on different surfaces of sc, fcc and bcc lattices of about 20000 effective magnetic sites
have been considered. The MC procedure is described elsewhere [23]. A realistic ratio
of the exchange and the dipolar constants D/J = 10−3 has been used. First the case
will be discussed where exchange constants between all pairs of nearest neighbors are
identical. The anisotropy constants have been widely varied in the regime of vertical
and in-plane magnetization. The best agreement with the experimental results [63]
(domain width of 20–25 nm and wall width of 6–9 nm) give constants corresponding to
an anisotropy energy density K1 = (1.6–2.0) ·Kd, K2 = (0–0.7) ·Kd, Kp = (0–0.6) ·Kd

with Kd = 2πM2
s the shape anisotropy. The value of the out-of-plane anisotropy is

K1 = (2–2.1) · Kd.
Fig. 3.3 shows typical MC low-temperature domain configurations found for thin

films with sc(110), bcc(110), fcc(110) and fcc(100) surfaces, while Fig. 3.4 gives the
structure of the corresponding unit cells. The domain walls in sc(110) films are mainly
oriented along [001], while the walls in bcc(110) films are oriented along the [11̄0] direc-
tion (Fig. 3.3 a,b and Fig. 3.4 b,c). The domain walls of fcc(110) films (Fig. 3.3c and
Fig. 3.4d) are more disordered and can run along [11̄0], [11̄2] or intermediate crystallo-
graphic directions. However, one never finds a [001] orientation. The domain pattern
of an fcc(100) film, shown in Fig. 3.3d, is completely disordered. All possible orienta-
tions of domain walls can be found in the magnetization configuration. Similar results
have been obtained for all other surfaces of cubic crystals. Thus, for isotropic exchange
interactions the orientation of domain walls of (110) surfaces of cubic crystals is highly
anisotropic, whilst this is not the case for the (100) and (111) surface orientations.
Those results are consistent with experiments where anisotropic wall patterns have
been found for bcc(110) surfaces [41, 63] while a disordered configuration has been
revealed for an fcc(111) film surface [37]. Why it happens? To answer this question
all energy contributions should be analyzed separately.
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Figure 3.3: Top-view of MC domain configurations in 600 nm large and 2 ML thick samples
with: sc(110) (a), bcc(110) (b), fcc(110) (c) and fcc(100) (d) surfaces. Opposite domains
are imaged as dark and light areas. Exchange interactions are isotropic, kT = 0.05J ,
K1 = 9 · 10−3J . Upper directions correspond to (110)(a-c) while bottom to (100) (d)

surface.
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Figure 3.4: Schematic top view of a Bloch wall, the magnetization is represented by
arrows (a). Top view of the unit cell of 2 ML thick sc(110) (b), bcc(110)(c), fcc(110)(d)
and fcc(100)(e) films. Dark and light balls denote the atoms belonging to the first and the
second layer correspondingly. Nearest neighbor bonds are shown as connections between

the atoms.
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3.3.2 Magnetocrystalline and Shape Anisotropy

To check whether the shape and the magnetocrystalline anisotropy can influence
the orientation of magnetic domain walls several parameters have been widely varied in
the simulations. First, the uniaxial anisotropy constants k1 and k2 have been changed
in the regime of vertical magnetization. The thickness of domain walls decreases with
increasing absolute value of k1 and/or k2. However, the orientation of domain walls
is not influenced by the perpendicular anisotropy. The reason for such behavior is a
strong reduction of the shape anisotropy in monolayer thick nanomagnets with (110)
surface symmetry as has been demonstrated recently [49, 50]. As a result the gain in
the shape anisotropy due to reorientation of domain walls at thicknesses t ≤ 4 ML is
negligibly small, i.e., in contrast to thicker magnets described in the Fig. 3.1 the shape
and the uniaxial vertical anisotropy cannot govern the wall orientation.

Next, an additional in-plane anisotropy kp has been strongly varied in the regime
of vertical magnetization for different sample shapes [63]. Fig. 3.5 shows a portion of
an elongated nanowire of rectangular shape with a low wall density. Increase of the
in-plane anisotropy only leads to an alignment of the magnetization within the wall
with no consequences for the wall direction. This happens for a similar reason as in
the case of a uniaxial perpendicular anisotropy. The wall cross sections are so thin,
that their charging due to the strong in-plane anisotropy leads to only a very weak
stray field, which is insufficient for the reorientation of walls. This shows that the
mechanism of wall orientation described here is distinct from the one observed in bulk
and mesoscopic magnets, which is often governed by the magnetic anisotropy and the
dipolar energy.

 

pK
Figure 3.5: Top-view of a simulated
nanowire sections of 20 nm width with
a small density of domain walls. Black
(red) and dark-grey (blue) areas denote
up- and down-magnetized domains cor-
respondingly. The magnetization is
represented by arrows. White contrast
gives the orientation of domain walls.
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3.3.3 Exchange Energy

While in the atomistic approximation the exchange energy is often described by
the Heisenberg Hamiltonian (see Eq. 3.2) with exchange integral Jhkl as an interac-
tion parameter, in a continuum theory a so-called exchange stiffness tensor A is used
instead. The exchange stiffness relates the exchange integral with the symmetry of a
lattice: A = 2JhklS

2

a
· c, where c = 1 for the primitive cubic lattice, c = 2 for the bcc

lattice and c = 4 for the fcc lattice [68].

Orthorhombic-like Symmetry

For lattices with cubic symmetry A is isotropic. For orthorhombic lattices with
a translation vector T = ha1 + ka2 + la3 where h 6= k 6= l are generally non-
equal integers and a1, a2, a3 is a set of three linearly independent vectors, A may be
anisotropic in spite of the isotropy of Jhkl constants. The reason is the proportionality
of the components of the exchange tensor Ahkl to the absolute values of a1 = ha1,
a2 = ka2 and a3 = la3 [68]

Ah =
2JhS

2

a2a3

a1 6= Ak =
2JkS

2

a1a3

a2 6= Al =
2JlS

2

a1a2

a3 . (3.2)

It has recently been demonstrated [69] that an anisotropy of the exchange stiffness
tensor can lead to the anisotropic orientation of the domain walls in bulk orthorhombic
materials. At first sight this theory is not applicable to the case of double layers with
lattices of perfect cubic symmetry.

However, let us look more closely the unit cells of different surfaces described in the
Section 3.3.1. What is the main difference between the (110) surface of a 2 ML thick
film and all others? While the basis of all non-(110) surfaces is a square, the basis of
(110) surfaces is a rectangle (see Fig. 3.4). This happens because the (110) surface is
a diagonal plane of a cube. If a film is only two monolayers thick such a symmetry
can be regarded as a part of an orthorhombic Bravais cell with a translation vector
T = ha1 + ka2 + la3 with h 6= k 6= l, where h and k are the sides of the rectangular
base. Therefore, the exchange stiffness parameter of (110) surfaces is anisotropic,
whereas all other surfaces have an isotropic A. In thicker films the cubic symmetry
of the lattice structure with fcc, sc or bcc stacking is restored. All three unit vectors
become equal and the anisotropy in the orientation of magnetic domain walls induced
by the orthorhombic-like symmetry of ultrathin films disappears.

Thus, the orthorhombic-like symmetry explains qualitatively an anisotropic distri-
bution of domain walls in ultrathin films with (110) surface. Quantitative predictions
of preferential wall orientations can be made on the basis of a phenomenological model
developed in [64], which will be described below. Both methods give identical results
which are consistent as with the Monte Carlo simulations as with experiments [37, 63].
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Phenomenological Model

Fig. 3.4 shows a top-view of a conventional Bloch wall (a) and unit cells of a
double-layer with an sc(110) (b), a bcc(110) (c), a fcc(110) (d) and a fcc(100) (e)
crystalline lattice. Atoms are sketched as balls where dark ones belong to the surface
and light balls to the subsurface layer. Connections between atoms indicate nearest
neighbor bonds. From Fig. 3.4(a) it is clearly visible that the magnetization rotates
along an axis perpendicular to the plane of the wall while magnetic moments belonging
to planes which are parallel to the plane of the wall are parallel. Since in a ferromag-
net neighboring spins hold the lowest energy when they are parallel, the loss in the
exchange energy due to the wall formation results from the bonds which have non-zero
projection on the direction perpendicular to the course of the wall. For example, if the
wall is oriented along the [010] direction of the fcc(100) surface (Fig. 3.4e) the mag-
netic moments connected by [010] bonds will be parallel while moments connected by
[001] bonds will have a maximal possible mutual angle and, consequently, a maximal
increase in the exchange energy △EJ

[001]. The moments connected by [011] and [011̄]
bonds will have intermediate mutual angles as they are neither parallel nor perpendic-
ular to the direction of energy loss. It means, that the local increase in the exchange
energy due to the magnetization rotation in a domain wall will be proportional to the
projection of an atomic bond on the axis perpendicular to the wall orientation.

To obtain losses in the exchange energy due to formation of a domain wall in this
model, in a first step projections of all bonds to the axis perpendicular to the plane of
the wall (P⊥to[hkl]) were calculated for single and double layers of (100), (111) and (110)
surfaces of bcc, fcc and sc crystals. The nearest neighbor bonds have been assumed to
be of unit length. The length and the number of projections P⊥to[hkl] for double layers
with (110) surface are brought together in Table 3.1. The loss in the exchange energy
per unit cell for a wall along one of the [hkl] directions has then been calculated by
summing up the exchange coupling constants (J[hkl] = 1.0) multiplied by P⊥to[hkl] for
all bonds in the unit cell:

△E
[hkl]
J [a.u./unit cell] =

∑

i

J[hkl] · P⊥to[hkl] .

For a wall along [11̄2] of an fcc(110) lattice, for example, this results in (see also
Table 3.1):

△E
[11̄2]
J = 3 ·

√

2

3
+ 4 ·

√

2

3
+ 4 · 1√

12
= 5.74 [a.u.] .

The exchange energy of a domain wall per unit cell is smallest for the [11̄0] direc-
tion of the bcc(110) and for the [001] direction of the sc(110) surface. In case of an
fcc(110) crystal two orientations have similar energy. These are the [11̄2] direction
with △EJ

11̄2 = 5.74 and [11̄0] with △EJ
11̄0 = 5.65. Hence, the exchange energy cost

in the systems described above is orientation dependent. The preferential orientations
of walls derived in the phenomenological model are [11̄0] for bcc(110) and [001] for
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Table 3.1: △E
[hkl]
J and the projections of nearest-neighbor bonds onto the direction perpen-

dicular to the plane of the domain wall for double layer films with (110) surface orientation.

Stac- Wall orien- △E
[hkl]
J / P⊥to[hkl]

a of bonds

king tation [hkl] unit cell [a.u.] running along

[001](4) [11̄0] (4) [11̄1] (8)

bcc [001] 8.52 0 1√
2

1√
2

(110) [11̄0] 6.00 1
2

0 1
2

[11̄1] 6.76 1√
6

√
3

2
1√
6

[11̄0](3) [11̄2](4) [11̄2̄](4)

fcc [001] 7.00 1 1
2

1
2

(110) [11̄0] 5.65 0 1√
2

1√
2

[11̄2] 5.74
√

2
3

√

2
3

1√
12

sc [001](2) [11̄0](2)

(110) [001] 1.41 0 1√
2

[11̄0] 2.00 1 0
a Number of bonds per unit cell is given in brackets.

sc(110) crystalline films. For fcc(110) the wall orientation is defined by the competi-
tion between [11̄0] and [11̄2] directions. The cost in the exchange energy △EJ

hkl for
other surfaces is constant and does not depend on the wall orientation. Hence, for
[001] and [111] surfaces of a cubic crystal the domain walls are predicted to have no
preferential orientation. The results described above give a quantitative measure of
the orientation dependent exchange energy loss due to formation of a domain wall.

3.4 Theoretical Analysis: Anisotropic Exchange

Integral

As has been shown in the previous Section magnetic domain walls are anisotropic
in ultrathin films with (110) surface orientation. In case of ideal lattice structures this
anisotropy comes from the orthorhombic-like symmetry of an incomplete cubic cell.
Real materials grown on a substrate, however, almost never have an ideal structure
because of the lattice mismatch. For the example of Fe/W(110) the first two Fe layers
grow pseudomorphically and adopt the lateral lattice constant of tungsten, which
is about 10% larger than that of bulk iron. As a consequence, the Fe–Fe interlayer
distance relaxes below the Fe bulk value [70]. This leads to a change of the interatomic
distances. Namely, the neighbor distance in the [11̄0] direction, marked red in Fig. 3.6,
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decreases to a value close to the nearest neighbor distance in bulk iron, and the spacings
in [11̄1] and [11̄1̄] direction (blue) are increased. Hence, instead of six nearest neighbors
as in an ideal, 2 ML thick bcc(110) film, in Fe/W(110) all atoms have eight bonds of
similar length. Following Ref. [70], the respective distances in units of the lattice
constant of bulk Fe are d001 = 0.95, d11̄1 = 1.10, and d11̄0 = 1.15.

Figure 3.6: Unit cell of 2 ML Fe/W(110) in (a) top and (b) perspective view. Blue and
black lines denote the nearest neighboring bonds in an undistorted, ideal crystal. Red lines

denote additional nearest neighboring bonds due to relaxation.

As follows from the Eq. 3.2, the anisotropy of the exchange stiffness parameter
A may come not only from the orthorhombic-like lattice symmetry but from the
anisotropy of the exchange integral J[hkl] as well. The exchange integral is very sen-
sitive to the nearest neighbor distance. Hence, the lattice mismatch in real materials
may also lead to anisotropic effects. In the literature the calculation of J[hkl] as a
function of relative position rij of the magnetic moments i and j has been performed
for several ferromagnetic materials [71, 72]. These calculations show that the strength
of the exchange coupling is a function of rij. Especially interesting is the behavior
of J(rij) in Fe. For Fe a reduction in nearest neighbor spacing dNN with respect to
the bulk value drives the exchange towards antiferromagnetism. This effect has been
made responsible for the fact that fcc-Fe is antiferromagnetic while bcc-Fe is a ferro-
magnetic material [73, 74]. This argument is also supported by the position of Fe on
the Bethe-Slater curve, which is widely used in the physics of ferromagnetic alloys [74].
Thus, a decrease of the interatomic distance in [001] direction can lead—in contrast
to other ferromagnets—to a reduction of the ferromagnetic exchange parameter.

For Fe nanowires on W(110) the situation is even more subtle due to hybridization
and polarization effects at the Fe/W interface. All the more interesting is the advance,
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described in very recent studies [75, 76], where the exchange stiffness of Fe films
adsorbed on a W(110) surface has been calculated. The authors find that for a bcc
lattice the exchange stiffness Abcc = 2JS2/a , depends on the direction along which the
spin-wave is excited. For one monolayer Fe/W(110) the exchange stiffness in the [11̄0]
direction is 4 times larger than in the [001] direction [76]. For a 2 ML film the difference
is found to be smaller but the tendency remains the same. The physical reason for
this anisotropic behavior can lie in changes of interatomic spacing, as discussed above,
or in additional indirect spin interactions through the W substrate [76]. In any case,
the dependence of the exchange interaction on rij must be taken into account in the
simulation of the magnetic ordering. This is especially important if other effects can
influence the orientation of the domain walls.

An example of such a situation is provided by narrow Fe/W(110) nanowires having
low wall density. In this case the wall orientation can be determined apart from the
anisotropic exchange stiffness by the minimization of the wall length. If the shortest
path does not coincide with the preferential direction for the exchange stiffness the
two effects compete. This happens for [11̄1̄] oriented, 20 nm wide Fe nanowires. The
shortest distance lies perpendicular to the sides of the wires, while exchange stiffness
prefers the [11̄0] orientation. For isotropic exchange constants a typical Monte-Carlo
configuration in narrow nanowires consists of walls which are neither perpendicular to
the sides of a wire as expected from the minimization of the wall length nor parallel to
the easy [11̄0] direction as expected from the orthorhombic-like lattice symmetry. The
domain walls are mainly oriented along an intermediate [11̄1] axis. In case of narrow
[001] or [11̄0] oriented wires the domain walls run perpendicular to the wire sides, i.e.
the length minimization wins.

In the next set of calculations three different exchange constants Jhkl for the 3
nonequivalent pairs of neighboring magnetic moments have been introduced. Different
ratios of J11̄0 : J11̄1 : J001 (red, blue and black bonds in Fig. 3.6, respectively) have
been explored. The best overall accordance with the experiment is found for J11̄0 :
J11̄1 : J001 = 4 : 2 : 1 (Fig. 3.7(b) and (c)). For [11̄1] nanowires (Fig. 3.7(b)) the
majority of the walls follow the [11̄0] axis. However, [11̄1] walls can also be found.
For [11̄0] nanowires of 40 nm width (Fig. 3.7(c)) [11̄0] oriented domain walls have also
been obtained. The walls are not perfectly straight but show some irregularities. For
example, the wall is forced out of the [11̄0] direction at the rim of the nanowire. A
similar behavior has also been found experimentally (see circle in Fig. 3.2(a)). Different
orientations and strengths of the in-plane anisotropy Kp have been explored in [63]. As
already mentioned above the only effect of a strong Kp is an alignment of the magnetic
moments in the wall along the respective axis and broadening of the walls. The
orientation of domain walls is not influenced by Kp, in accordance with the continuum
model (Fig. 3.7(a)), showing that the mechanism of wall orientation described here
is distinct from the one observed in bulk material, which is governed by magnetic
anisotropy and dipolar energy.
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Figure 3.7: Top-view of ex-
perimental (a) and simulated
(b),(c) Fe/W(110) nanowire
sections of 20 nm (a),(b) and
40 nm (c) width. Majority of
the walls run along [11̄0] inde-
pendent on the orientation of

nanowires.

3.5 Summary

In conclusion, the orientation of magnetic domain walls in ultrathin films and nano-
magnets is strongly influenced by the atomic lattice structure. The exchange stiffness
tensor is anisotropic in mono-, double- and triple-layers with cubic structure and (110)
orientation of the film surface due to the orthorhombic-like lattice symmetry of the
incomplete cubic cells. The exchange stiffness for all other surface orientations of ideal
cubic crystals is isotropic. Apart from the orthorhombic like symmetry the exchange
stiffness can admit anisotropic character due to the anisotropy of the exchange integral
resulting from the lattice relaxation. The anisotropy in the exchange stiffness leads
to anisotropy in the orientation of magnetic domain walls. The magnetic anisotropy
and the magnetostatic energy which govern wall orientations in bulk material, play a
minor role in the ultrathin film limit.
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Chapter 4

Self-Competition of the
Long-Range Interactions in
Nanomagnets

4.1 Introduction

Various problems in the theory of nanosystems lead to the consideration of the
interactions amongst dipoles. Whereas in atomic magnetic materials the exchange
interaction usually dominates over dipolar interactions, the opposite happens in many
nanoscale particle or clustered magnetic systems, for which the interparticle interac-
tions are mainly of magnetostatic origin. Long-range magnetostatic interactions are
also at the heart of the explanation of many peculiar or anomalous phenomena ob-
served in systems of fine particles embedded in a nonmagnetic matrix systems, molec-
ular networks, colloids and rare-earth ions such as the 2D honeycomb magnets ErX3.
These demonstrate that magnetostatic interactions can be crucial in determining the
magnetic order at low temperatures. On the other hand, the long range nature of mag-
netostatic interactions inevitably leads to frustration – a spin cannot simultaneously
satisfy the conditions dictated by all the interactions. Depending on a system the mag-
netostatic interactions may contain mainly dipolar contribution, as so-called dipolar
magnets, or additional higher-order multipolar terms as nanomagnetic arrays. In the
following the details of the self-competition in the dipolar and multipolar systems will
be given.

4.2 Dipolar Interactions

The dipole-dipole interaction is described by the Hamiltonian

Edip = D
∑

i,j

(

Si · Sj

r3
ij

− 3
(Si · rij) (Sj · rij)

r5
ij

)

, (4.1)

43
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where D =
µ0µ2

g

4πd3 is the dipolar coupling parameter with µ0 - permeability of the
vacuum, µg - magnetic moment of a particle, d - interparticle distance, S - the unit
vector and the relevant sum is running over all spin pairs i and j defining the vector
rij.

4.2.1 Ising Moments on a periodic Lattice

In contrast to the isotropic exchange coupling the dipolar interaction has an
anisotropic character. This means that even in a simple Ising case the ground state

(a) 

(b) 

Figure 4.1: Ground dipolar states for
two Ising moments which are oriented
perpendicular (a) or parallel (b) to the

film plane.

depends on the spatial orientation of the mag-
netic moments. If for example two Ising
moments have only up- or down-orientations
with respect to a plane, the right part of the
Eq.4.1 becomes zero as the cosine of 90 de-
gree is zero. Therefore, the ground state con-
figuration is an antiparallel alignment of the
moments Fig. 4.1a with energy per moment
Edip = −1 for D = 1 and rij = 1. For right-
or left- orientations in the film plane, however,
the ground state is head-to-tail configuration
Fig. 4.1b with Edip = −3 as the right part of
the Eq. 4.1 is not zero any more.

On a square lattice, the dipolar interaction
between vertical spins corresponds to a long-
range antiferromagnetic coupling and there-
fore leads to an unfrustrated checkerboard
configuration. Fig. 4.2 shows Monte-Carlo
structures for vertical Ising moments on a tri-

angular lattice for two temperatures [20]. The configuration gives evidence of an
effective in-plane anisotropy linked with the underlying discrete lattice. At a local
size, an organization with parallel stripes of alternate spins occurs. At a larger scale
stripes become organized with chevrons and labyrinthine patterns, as already observed
in magnetic nanoarrays with uniaxial anisotropy [77] and magnetic liquids [78, 79].
With increasing temperature the zigzags and loops of complex labyrinthine structure
roughen and shorten. An in-plane Ising dipolar system on a square lattice is frus-
trated. The ground states for this case are shown in Fig. 4.3. These are a single
domain structure for a triangular and antiparallel stripes for a square lattice. The cor-
responding energies per spin on an infinite lattice for D = 1 are Esquare

dip = −2.5494 for

the configuration Fig. 4.3a and Etriangle
dip = −2.7585 for the configuration Fig. 4.3. The

patterns of Figs. 4.1-4.2 appear because of the inability to form ideal configurations
of Fig. 4.1 for all pairs of spins, i.e. because of frustration.
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a b

 

Figure 4.2: Pure dipolar coupling: por-
tion of 200×200 vertical Ising spins on a tri-
angular lattice with labyrinthine patterns of
up (black) and down (white) spin domains.
¿From left to right: kT/D = 0.05 and 0.2.

Figure 4.3: Zero temperature ground
dipolar states for in-plane Ising moments on
a square (a) and a triangular (b) lattice.

4.2.2 Vector Dipolar Moments on a Periodic Lattice

As it has been shown in the previous section in-plane configurations of mag-
netic/electric moments usually have lower dipolar energy than out-of-plane ordering.
This becomes even more evident in systems consisting of vector moments which are
free to choose any orientation in space. The pure dipolar systems on two-dimensional
lattices often demonstrate in-plane alignment of moments due to an anisotropy arising
from dipole-dipole interactions. In that case the XY and the Heisenberg models lead
to very similar ground states.

Another striking feature of the dipolar interaction is that it decreases slowly as a
function of the distance. As a consequence the dipolar field Hdip(i) experienced by
a given moment Sidepends significantly on the moments located at the boundary of
the sample and this results in the so-called shape anisotropy. The shape anisotropy
is usually calculated as a difference between the dipolar energy of a most unfavorable
and that of a most favorable configuration.

It is well known that the ground state of a dipolar system on a square lattice is
antiferromagnetic just as the in-plane Ising configuration. However, several studies
of this ground state demonstrated that the situation is more subtle than one might
initially suppose [80, 81]. The ground state of an infinite square lattice is highly de-
generate and defines a continuous manifold of spin configurations at T = 0, although
the dipolar coupling itself is not rotational invariant. The same is true for a dipolar
system on a honeycomb lattice. For zero temperature the spins lie in the film plane
but the ground state is continuously degenerate [82]. Examples of degenerated config-
urations are shown in Fig. 4.4. Configurations Fig. 4.4a,b have the same energy and
are both ground states for a dipolar honeycomb lattice. The right configuration is ob-
tained from the left one by the rotation of the sublattice A (red) by φ = +π/6 and the
sublattice B (blue) by φ = −π/6, i.e. ϕ(RA) → ϕ(RA) + φ and ϕ(RB) → ϕ(RB)− φ.
The same transformation has been performed for a square lattice Fig. 4.4c,d.
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Figure 4.4: Two examples of the class of continuously degenerate ground states
(φ = 0, π/6) of a dipolar magnet on a honeycomb (a-b) and a square (c-d) lattice.

 

a c b 

Figure 4.5: Pure dipolar coupling: top view of a portion of low-temperature
(kT = 0.05D) Monte-Carlo configuration on (a) a square lattice, (b) a honeycomb
lattice; (c) experimental dipolar model on a square lattice. The model belongs
to the physical collection of J. Kirschner at the Max-Planck Institute for the mi-

crostructure physics in Halle, Germany
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a 

c 

b 

Figure 4.6: Pure dipolar cou-
pling: top view of a portion of
low-temperature (kT = 0.05D)
Monte-Carlo configuration on
(a) a triangular lattice, (b) a
kagome lattice; (c) experimen-
tal dipolar model on a triangu-
lar lattice. The model belongs
to the physical collection of J.
Kirschner at the Max-Planck In-
stitute for the microstructure

physics in Halle, Germany

At finite temperatures the situation for the square
and the honeycomb symmetry is different. As has
been shown by Monte Carlo calculations and spin
wave theory, a magnetic ordering and a critical tem-
perature exists for dipole coupled spins on a square
lattice [81, 83], since the magnetic and temperature
excitations are not continuously degenerate. In this
case a quartic shape anisotropy is present, the cor-
responding easy axes being the edges of the square
lattice. In other words, the density of states and thus
the entropy depends on the magnetic direction within
the lattice. This phenomenon is an example of the
order-by-disorder effect in frustrated magnets [83]. A
typical configuration obtained by Monte-Carlo simu-
lations for a finite square lattice at finite temperature
is given in the Fig. 4.5a. Lines of dipoles are observed
on the edges which are formed due to the pole avoid-
ance principle. The microvortex φ = 45◦ configura-
tion is formed in the center. Hence, the finite size
and temperature remove the continuous degeneracy
of the ground state. The Monte-Carlo data have been
recently confirmed by an experimental model made of
small magnets which are free to rotate in the XY-plane
(see Fig. 4.5b). The density of states on a honeycomb
lattice does not depend on a specific lattice direction
and the ground state is degenerate with respect to con-
tinuous rotations of opposite sense on both sublattices
[84]. Therefore, a low-temperature Monte-Carlo struc-
ture on honeycomb lattice shows different degenerate
states in the same sample (see Fig. 4.5c).

What happens with dipoles on a triangular and a
kagome lattice? For open boundary conditions a pla-
nar vortex structure appears, which is formed to avoid
free magnetic poles at the boundaries of the sample
(see Fig. 4.6a,b). The ground state of an infinite sam-
ple is a ferromagnetic-like monodomain structure. In
the Fig. 4.6c a picture of experimental verification of
the dipolar system made of 364 small magnets on the
triangular lattice is shown. The Monte-Carlo simula-
tions and the experiment reveal identical structures.
Thus, due to the geometric frustration of the lattice,
which commonly leads to a disorder or a noncollinear-
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ity, the perfectly ordered vortex is formed.
In conclusion, although the dipolar coupling has an antiferromagnetic nature the

ground states of vector spins for pure antiferromagnetic and pure dipolar interactions
are completely different. Square and honeycomb geometries which are unfrustrated in
case of pure antiferromagnetic coupling lead to frustrated, non-collinear ground states
in the pure dipolar case. Strongly frustrated, non-collinear for a pure antiferromagnetic
interaction triangular and kagome lattices lead to ordered collinear low-temperature
dipolar configurations.

4.3 Multipolar Interactions: Why can that be in-

teresting?

Among the interactions in many-body atomic, molecular or nanoparticle systems
those of electrostatic or magnetostatic nature are very important. Recently, arrays of
nanoparticles or adsorbates have been proposed for a number of applications as storage
[51], high speed non-volatile magnetic memory (MRAM) [52], and logic functions
for computations [53]. Different applications require different properties of an array.
While in storage applications every particle should be individually addressed; i.e. the
nanoelements should not interact, for logic schemes strong interactions are necessary.
In both cases the control of interactions between nanoparticles is very important. To
derive the theory of these interactions one needs to know the charge distribution of
a particle. One of the simplest and most effective ways to do this is to describe a
distribution of charges as a series of multipole moments. There exist several different
ways to explain what are the multipole moments. First a mathematical point of view
will be addressed.

(ii) Multipole moments: Spherical Coordinates

Any two-dimensional periodic function can be expanded in terms of an infi-
nite sum of sines and cosines with corresponding coefficients. This expansion is known
as Fourier series

f(x) =
1

2
a0 +

∞
∑

n=1

an cos(nx) +
∞

∑

n=1

bn sin(nx) . (4.2)

The coefficients anand bn can be described as integrals of the periodic function Eq. 4.2
multiplied with cos(nx) or sin(nx)

an = 1
π

π
∫

−π

f(x) cos(nx)dx ,

bn = 1
π

π
∫

−π

f(x) sin(nx)dx .
(4.3)
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Similarly, any scalar field on a sphere, which is periodic by definition, can be
expressed in spherical coordinates r = f(r, θ, ϕ) (description of spherical coordinates
is given in Fig. 4.7) as a series of Spherical Harmonics with corresponding coefficients,

H(θ, ϕ) =
∞

∑

l=0

l
∑

m=−l

QlmRlm(r) =
∞

∑

l=0

l
∑

m=−l

QlmYlm(θ, ϕ)
4π

2l + 1
rl . (4.4)

The coefficients Qlm are the multipole moments, Rlm(r) =
√

4π
2l+1

rlYlm(θ, ϕ)- nor-

malized Spherical Harmonics, Ylm(θ, ϕ)- simple Spherical Harmonics. The spherical
harmonic with −l < m < l is a function of the two coordinates θ, ϕ on the surface of a
sphere and can be modeled by special set of polynomials known as Legendre functions
Plm(cos θ). Spherical harmonics are natural functions for the description of a system
with spherical symmetry. For example, with spherical harmonics the 3D motion of
an electron around a nucleus can be described. In that case a spherical harmonic
can be though of as a 3D-path that a particle can travel without “destroying” itself
energetically. This 3D-path is not fixed, and can take on many different shapes, even
for one energy level. In this sense the spherical harmonics correspond to the angular
part of the atomic orbitals. An example of typical representation of e.g. dz2orbital in
physics is shown in the Fig. 4.8a.

The orbital corresponds to the spherical harmonic Y20 and is uniformly colored as
it represents simply a volume of space within which an electron would have a certain 
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y 

θ 

ϕ 

r 
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sinr θ
sin sinr θ ϕ

sin cosr θ ϕ

Figure 4.7: Definition of the spherical polar coordinates
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probability of being (the wave-function of electron). On the other hand, with the
spherical harmonics a spatial distribution of electric charges due to a molecule can be
represented. In that case a charge distribution is usually two-colored as in the Fig. 4.8b.
The colors correspond to positively and negatively charged parts of the distribution.
This representation is typical for quantum chemistry or molecular biology. The multi-
pole expansion plays an important role in the geosciences and the cosmology as well.

Figure 4.8: Representation of the spher-
ical harmonic Y20 for the description
of (a) atomic orbital, (b) distribution
of charges, (c) sky polarization (zonal
spherical harmonic)Representation of the
spherical harmonic Y20 for the description
of (a) atomic orbital, (b) distribution of
charges, (c) sky polarization (zonal spher-

ical harmonic)

With help of the multipoles gravity fields can
be expanded and the linear polarization of
the sky can be predicted. In geosciences
and astronomy multipoles are defined with
slightly different constants which lead to so-
called zonal, tesseral and sectoral representa-
tions. A typical zonal image of Y20is given in
the Fig. 4.8c. There are many other appli-
cations of the multipole calculus throughout
the physical sciences as nuclear physics, ra-
dio physics etc. The graphical representation,
however, can be attributed to one of three ex-
amples of the Fig. 4.8.

Similarly to the Fourier coefficients of the
Eq. 4.3, a multipole moment is nothing else
as a volume integral of a charge distribution

multiplied with the normalized spherical harmonic

Qlm =

∫

V

ρ(r)Rlm(r)dV . (4.5)

Hence, the multipoles themselves can be visualized as spherical harmonics. The
Fig. 4.8 represents then Q20.

(iii) Multipole moments: Cartesian Coordinates

For the calculation of the electrostatic potential ϕ of a charge density ρ at
the distance R >> r where r is the maximal size of the charge distribution ρ in
Cartesian coordinates one can use so-called multipole expansion. An electrostatic
potential as a function of R can be expanded in integral powers of a small parameter
r/R; i.e., ϕ(R) can be represented as a number series of a sum where higher terms
include higher powers of r/R: ϕ(R) = ϕ0/R + ϕ1/R

2 + ϕ2/R
3 + ... and become less

and less important at large distances. This is known as the multipole expansion with

0th order: Monopole potential (falls off like1/R, corresponds to Q0)
1th order: Dipole potential (falls off like 1/R2, corresponds to Q1)
2nd order: Quadrupole potential (falls off like 1/R3, corresponds to Q2)
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3rd order: Octopole potential (falls off like 1/R3, corresponds to Q3)
etc....

 

0Q

1Q

2Q

2Q

3Q

3Q

Figure 4.9: Possible shapes of multipoles composed of several electric charges.
Q0-monopole, Q1-dipole, Q2-quadrupole, Q3-octopole

Shapes of multipoles to the third order in terms of electric charges are shown in
the Fig. 4.9. The first term corresponds to a single charge and is called a ”monopole
moment”; it is a scalar. The dipole moment is a vector. In general, the order-n term
in the sum is 1/|x|n+1 times the contraction of a certain nth-rank tensor with n copies
of; the tensor is the 2n-pole moment of the configuration of charges.

4.3.1 Multipolar Moments of Molecular Systems and Bose-
Einstein Condensate

Polar molecules with an asymmetric charge distribution; i.e. with one end of the
molecule relatively negative with respect to the other possess a permanent dipole
moment. Examples are HF, H2O, FCl (where the F atom is negative with respect
to the Cl atom), the polyatomic molecule HCCl3 (where the H end of the molecule
is positive with respect to the three Cl atoms), three isomers of 1,1-Dichloroethene;
cis-1,2-Dichloroethene; trans-1,2-Dichloroethene and many others. As a dipole is a
vector quantity a total molecular dipole can be obtained by summing up all individual
bond-dipoles as shown in the Fig. 4.10.

Although linear molecules as CO2 or acetylene (H-C≡C-H) and the planar molecule
benzene (C6H6) do not have molecular dipole moments (Fig. 4.10), they have non-zero
quadrupole moments [85]. Another example of organic quadrupoles give 3,4,9,10-
perylenetetra-carbo-xylicdianhydride, better known as PTCDA molecules, which can
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Figure 4.10: Molecular dipole moments µ of polyatomic molecules

be adsorbed on various substrates [86, 87]; H2, N2, CO on salts or metal surfaces;
ortho-para hydrogen molecules adsorbed on hexagonal boron nitride; solid hydro-
gen; N2Ar mixtures and many others [88–90]. There exist more complicated cases.
For example, the total quadrupole moment of the water molecule is zero. However,
Qxx

2 ,Qyy
2 ,Qxy

2 ,Qxz
2 ,Qyz

2 tensor components of the quadrupole moments in Cartesian co-
ordinates have non-zero values. For more symmetrical molecules, the first non-zero
multipole moments have higher order. Examples are the methane molecule (CH4) and
giant Keplerate molecule Fe30 which have no dipole or quadrupole moment, but has a
non-zero octopole moment [91, 92].

More complicated molecular charge distributions have different multipolar con-
tributions. For example an “American football” which is polarized along it’s long
axis has non-zero even multipolar contributions Qfootball = Qfootball

0 + Qfootball
2 +

Qfootball
4 + Qfootball

6 + Qfootball
8 + ... The same is true for a discus or any other po-

larized object, which is rotationally symmetric and at the same time symmetric
around it’s equatorial axis. Rotationally symmetric but not equatorially symmet-
ric objects as, e.g., bowling pin possess as even as odd multipolar moments Qb.pin =

Qb.pin
0 + Qb.pin

1 + Qb.pin
2 + Qb.pin

3 + Qb.pin
4 + ....

A Bose-Einstein condensate is a phase of matter formed by bosons cooled to tem-
peratures very near to absolute zero. At low temperatures, bosons can behave very
differently than fermions because an unlimited number of them can collect into the
same energy state, a phenomenon called “condensation“. For the first experimental
verification of this phase predicted by A. Einstein and S. Bose the Nobel Prize in
Physics for 2001 has been awarded to Eric A. Cornell, Wolfgang Ketterle and Carl
E. Wieman. They succeeded by cooling 2,000 rubidium atoms to a temperature less
than 100 billionths of a degree above absolute zero to force the atoms to lose for
10 seconds their individual identities and behave as though they were a single ”su-
peratom”. Nowadays magneto-optical traps for gas condensation became much more
sophisticated and the drops of condensate can be arranged in a cubic structure in the
potential minima of an optical lattice. Recent experimental and theoretical studies
have established that 87Rb spinor condensate may be ferromagnetic at zero temper-
ature. It means, the expectation value of total spin of a condensate drop F is finite
〈F〉 6= 0 [93, 94]. As a result, an ensemble of condensates acts much like large spins
or dipoles on a crystalline lattice. The very new investigations [95] show that un-
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der certain circumstances Bose-Einstein condensate columns may have quadrupolar
moments.

4.3.2 Multipolar Moments of Nanomagnetic Particles

Particles with lateral size smaller than the characteristic exchange length d <
χex have a single domain magnetization configuration with a macroscopic magnetic

d

x

y

z

⊕

⊖

h

Figure 4.11: Scheme of a nanopar-
ticle with n-fold symmetry. Every
surface can be divided into n equiv-
alent isosceles triangles with edge
length d. The particle is magnetized

in z− direction

moment. In case of an ideal single domain all ele-
mentary dipoles inside of a particle are compen-
sated and only at the boundary appear uncom-
pensated positive and negative magnetic poles (see
Fig. 4.11).

Isolated magnetic poles have never been ob-
served in nature. They occur always in pairs as
in the example described. However, it is often
convenient to use instead of magnetic poles and
the vector field quantity H the notion of magnetic
charges and a scalar potential ϕ. The quantity
ϕ is defined so that it’s negative gradient is the
magnetic field H = −∇ϕ where the operator ∇ is
∇ = i ∂

∂x
+ j ∂

∂y
+ k ∂

∂z
. Here i, j,k are the unit vec-

tors of a Cartesian coordinate system, and (x, y, z)
are the coordinates at the point where the field or
potential is under consideration. In the framework
of this approximation the macroscopic moment of
a polarized or magnetized particle can be obtained
by means of the multipole expansion of a contin-
uous magnetization distribution within a dot de-
scribed in the Section 4.3 ((ii) or (iii). As can be
seen from the Eq. 4.5 the strength of a multipole moment depends solely on a charge
distribution; i.e. on a shape of an object and on a magnetization/polarization con-
figuration. Hence, for typical magnetization distributions corresponding multipolar
moments can be calculated on the basis of Eq. 4.5.

Let us assume a nanoparticle with n-fold symmetry (n > 1) within the x − y
plane, which is magnetized in z-direction (Fig. 4.11). The symmetry-axis is parallel
to the polarization. The upper surface of the particle is positively charged with the
surface charge density σ = µ0n · M(r) due to uncompensated dipoles, with the unit
vector n perpendicular to the surface and the magnetization vector field M(r). With
this definition the unit for the magnetic charge is Volt-second and the magnetic dipole
moment is measured in Volt-second-meter. The bottom charge is the mirror image of
the positive charge distribution at the top of the particle. To find the integral Eq. 4.5
explicitly the charged surface can be into n identical triangles (Fig. 4.11). Then Qlm

are calculated by the sum over the triangles (0 ≤ j ≤ n−1) of the top and the bottom
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surfaces. As the charged surfaces are planar the volume charge density ρ and the
volume integration in the Eq. 4.5 can be substituted by the surface charge density σ
and integration over the surface element dS

Qlm =

n−1
∑

j=0





∫

jthtop−triangle

dS|σ(r)|Rlm(r) −
∫

jthbottom−triangle

dS|σ(r)|Rlm(r)



 . (4.6)

After several simplification steps this integral can be evaluated analytically. The details
of the calculation can be found in [96]. Similar procedure can be applied to the in-plane
magnetized discs shown in the Fig. 4.12.

⊕⊖ ⊕⊖
MS

x

y

z

Figure 4.12: Scheme of a disk within the x− y-plane (magnetized in x-direction).
Due to the magnetization a magnetic surface positive and negative charges emerge.

In case of a uniform magnetization the charge is cosine distributed

Due to the natural symmetry of a disc it is trivially proportional to cos ϕ in cylin-
drical coordinates. Furthermore, the cosine charge distribution can be easily gener-
alized for non-uniform onion states as the charge distribution can be expanded like
ρ(r) ∝

∑

p

cp cosp ϕ with expansion coefficients cp. Due to the symmetry of the onion

configuration (Fig. 4.12) only odd integer p appear. The non-uniformity of the mag-
netization increases with increasing p. Expressing the volume element and normalized
spherical harmonics of the Eq. 4.5 in cylindrical coordinates one obtains the following
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integral

Qp
lm = µ0MS

h/2
∫

−h/2

dz

2π
∫

0

r0dϕ

(

cosp ϕ · Rlm(
√

r2
0 + z2,

π

2
− arctan

z

r0

, ϕ)

)

. (4.7)

The integral in Eq. 4.7 has polynomial solutions for all integer p including p = 1 for
uniform magnetization [97]. The low order moments of a particle Fig. 4.11 (Eq. 4.6)
with four-fold and cylinder symmetry as a function of a surface area and a height are
brought together in the Tab. 4.1.

Table 4.1: The multipole moments Qlm in units of the surface charge density up to the
order (l, m) = (7, 0) of isotropically magnetized in z-direction particles with four-fold and

cylindrical symmetry

l m=0 (Four-fold Symmetry) M=0 (Cylindrical Symmetry)

1 2hd2 πhd2

3 hd2(h2

2
− d2) π

4
hd2(h2 − 3d2)

5 h5d2

8
− 5h3d4

6
+ 7hd6

12
π
16

hd2(h4 − 10h2d2 + 10d4)

7 h7d2

32
− 7h5d4

16
+ 49h3d6

48
− 3hd8

8
π
64

hd2(h6 − 21h4d2 + 70h2d4 − 35d6)

The dependency of the strength of multipole moments on the effective aspect ratio
h/a of a particle with out-of-plane magnetization (Fig. 4.11) is shown in Fig. 4.13a
while for an in-plane magnetized disc (Fig. 4.12) in Fig. 4.13b. 
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Figure 4.13: a) The low order multipole moments Qlm (normalized to dipolar
moment Q10) of particles with fourfold symmetry with height h and edge length a.
For h → 0 Q30 ≈ −0.25Q10. (b) The multipole moments in units of the dipolar
moment of the in-plane magnetized discs with height h and radius a. Magnetization

configuration is a non-uniform onion state
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The most important conclusions are following. First, all homogeneously out-of-
plane magnetized prismatic particles with even rotational symmetry (Fig. 4.11) and all
in-plane magnetized discs (Fig. 4.12) do not possess multipolar moments with even l;
i.e., the quadrupoles (Q20), the hexadecapoles (Q40) etc. are not allowed (see Fig. 4.11).
The lowest moment with l even is (l,m) = (4, 3) for an odd, three-fold prism. The
first possible multipole moment with even l for a five-fold symmetry is (l,m) = (6, 5).
The functions Qlm(h, a) may cross zero. This happens for example for the octopole
moments of a cube (see Fig. 4.13a). For vertically magnetized particles the octopole
moment reaches 25% of the dipole moment in the limit of small thicknesses. This
geometry corresponds to sizes of particles often used in experimental studies [98–101].
For vertically elongated particles, such as arrays of magnetic nanocolumns [77, 99] or
liquid colloidal crystals with rod-like components [102] the magnitude of the octopole
moments exceeds that of the dipolar one. Similar results have been obtained for in-
plane magnetized dots. For h ≈ a the multipolar moments are smaller than the dipolar
one. However, in the limit of small thickness (h << r0) the octopole moment Qp

31

reaches -61% of the dipole moment Qp
11 for all odd p and even the dotriacontapole (Qp

51)
is of the order of 0.5Qp

11 (see Fig. 4.13b). Hence, the multipole moments of ultrathin,
in-plane magnetized discs may also be comparable with their dipolar counterparts. The
described geometry is typical for on-going experimental studies on magnetic arrays.

4.3.3 Multipole-Multipole Interactions

Knowing the multipole moments of two particles the multipole-multipole interac-
tion energy can be calculated. The most general formulation for two non-intersecting
charge distributions is given by [103]

EAB =
1

4πµ0

∑

lAlBmAmB

TlAlBmAmB
(RAB)QA

lAmA
QB

lBmB
(4.8)

with the geometric interaction tensor TlAlBmAmB
[85, 104]

TlAlBmAmB
(RAB) =

(−1)−lBI∗
lA+lBmA+mB

(RAB)

√

(lA + lB − mA − mB)!(lA + lB + mA + mB)!

(lA − mA)!(lB − mB)!(lA + mA)!(lB + mB)!
. (4.9)

The multipole-multipole interaction is a long-ranged one. Therefore, for an ensem-
ble of particles having higher order multipolar contributions the interaction energy
between every pair of constituents has to be calculated. For large systems it is im-
possible. On the other hand the strength of the interaction between higher order
multipoles decreases rather quickly with distance. The dependence on distance is
given by the complex conjugate of the irregular normalized spherical harmonic function

I∗
lA+lBmA+mB

(RAB) =
√

4π
2l+1

Ylm(θ,ϕ)
rl+1 . Hence, it follows from Eq. 4.9 that the interaction
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energy between moments QA
lA

and QB
lB

of order lA and lB respectively decreases with

increasing distance as RlA+lB+1
AB . Consequently, higher order multipole moments are

important mainly for R ≥ d. Therefore, for multipoles of order l ≥ 3 a so called cut-off
procedure is appropriate; i.e. calculations of interaction energy may be restricted to
several nearest neighbors only. To calculate ground states of multipolar systems one
need either to guess a configuration, calculate it’s energy and compare with another
guesses or introduce the Hamiltonian Eq. 4.9 into the Monte-Carlo scheme [105].

4.3.4 Ground States for Multipoles of even Symmetry:
Quadrupolar and Hexadecapolar Patterns

Fig. 4.14 shows low-temperature Monte-Carlo configurations of a pure quadrupolar
system on a triangular and a square lattice for three-dimensional and XY planar mo-
ments [106]. The consideration is restricted to rotationally symmetric Q20 quadrupoles
observed in nature [86, 88, 107, 108]. For three-dimensional moments on a triangular
lattice a long-range, three-dimensional configuration consisting of seven-atomic rotors
or “pinwheels” with the central atom oriented vertically and the others lying in the
film plane has a minimal energy (Fig. 4.14a). The vertical moments form a triangular
2a superstructure. That structure corresponds to the so-called “4-phase” of hydro-
gen molecules on a triangular lattice found in mean-field and molecular-dynamics
approximations [89, 90]. Every vertical quadrupole occupies the centre of a hexagonal
pinwheel. For an ideal configuration every pinwheel element belongs simultaneously to
two adjacent pinwheels, i.e. the unit cell has three in-plane and one vertical moment.
Therefore, the perfectly ordered pinwheel phase has an average vertical projection per
moment 〈Q20z〉 = 0.25.

The three-dimensional pinwheel structures have been observed experimentally,
by means of nuclear magnetic resonance spectroscopy studies in ortho-hydrogen
adsorbates[109] and Ar 1−x(N2)x quantum crystals [88, 89, 109]. Hence, the symmetry
of ground state confirms the pure quadrupolar nature of the pinwheel phase in those
systems. The phase is double degenerate as the rotors can have clockwise or counter
clockwise sense of rotation. In contrast to previous studies [89, 90] a 3D quadrupolar
system on a triangular lattice easily admits domains (Fig. 4.14a) with different sense
of rotation. Between the domains a domain wall consisting of moments with T-like
mutual orientation is formed (Fig. 4.14a). The T-orientation is the energetically most
favourable one for two quadrupoles. Therefore, the total energy of the domain struc-
ture is almost identical with that of a monodomain, while the entropy of the domain
structure is higher. According to the principle of maximal entropy the domain struc-
ture represents the state of lowest free energy at finite temperatures. The crossing of
the domain walls is, however, not allowed as this will lead to an increase of the in-
ternal energy due to the deviation of the moments from their equilibrium orientation
in the neighbourhood of the crossing point. Two parallel domain walls cannot come
closer than two primitive cells of the pinwheel structure (4a) without increase of the
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Figure 4.14: The low-temperature pure quadrupolar Monte-Carlo configurations
on a triangular (a,c) and a square (b) lattice. The quadrupoles are represented by
the spherical harmonic Y20 corresponding to the equipotential surface of a charge
distribution with Q20 quadrupole moments; the two clubs represent positive charge,
while the belly is negatively charged. Perspective view of a portion of a configura-
tion. The colour scheme denotes the squared vertical component of the projection
of a moment. The quadrupoles are 3D moments in (a, b) and XY moments in (c)
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internal energy of the system. Therefore the low-temperature configuration of a large
Q20 quadrupolar system on a triangular lattice consists of an array of clock-wise and
counter-clockwise “pinwheel” domains separated by parallel domain walls.

In contrast to the triangular lattice the ground state configuration of quadrupoles
on a square lattice is completely planar (Fig. 4.14b). The twofold lattice symmetry
permits the T-configuration for every pair of nearest neighbours, i.e. the configuration
is non-frustrated and monodomain. As the moments have not been constrained to lie
in the XY plane it can be concluded that the quadrupolar interaction induces very
strong easy-plane anisotropy for a square lattice. As this is not the case for a triangular
lattice a low-temperature configuration of a quadrupolar XY system with threefold
symmetry has been additionally calculated. Experimentally, this situation corresponds
e.g. to organic PTCDA molecules adsorbed on Ag(111) [86] having some freedom
of the rotation only in the XY -plane. The calculated ground state configuration is
given in Fig. 4.14c. Instead of the pinwheel phase we find a “herringbone” structure
consisting of lines of quadrupoles with two possible orientations. The moments make
an angle of 15◦ to the principal lattice axes and 45◦ to the direction joining the atomic
sites. Within the accuracy of our calculations the angle between two adjacent rows of
moments is exactly 90◦. The “herringbone” pattern found in the simulations is very
similar to that of the Ref. [86]. However, the molecules in the experiment are oriented
parallel to the principal axes and, consequently, the mutual angle between the rows
is 60◦. The analytical calculation of the energies for all possible relative orientations
of rows of the “bones” shows that the absolute minimum belongs to the Monte-Carlo
solution with the angle of 90◦. From this finding we conclude that the configuration of
Ref. [86] cannot be explained only from the minimization of electrostatic interactions
originating from the quadrupolar field of a molecule. One possible explanation is that
the rotation of the molecules is not free, another one is that the molecules possess
higher order multipolar contributions.

Hexadecapolar (Q40) ground states on a triangular and a square lattice for three-
dimensional moments are given in Fig. 4.15. The both configurations are planar. A
”herringbone” structure consisting of lines of hexadecapoles with two possible orien-
tations is formed on both lattices. For a triangular lattice moments make angles of
69◦ and 157◦ to the x axis, while for a square symmetry angles of 9.5◦ and 49.5◦ are
favorable. Within the accuracy of calculations [106] the angle between two adjacent
rows of moments are 88◦ and 40◦ correspondingly. Hence, a hexadecapolar contri-
bution supports the herringbone structure of a planar pure quadrupolar state on a
triangular lattice (Fig. 4.14c). However, the symmetry of the structure changes sig-
nificantly. Thus, the higher-order Q40 contribution is another possible explanation for
the herringbone pattern of PTCDA adsorbates found experimentally.
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Figure 4.15: The low-temperature pure hexadecapolar Monte-Carlo configura-
tions on a square (a) and a triangular (b) lattice. The hexadecapoles are repre-
sented by the spherical harmonic Y40 corresponding to the equipotential surface
of a charge distribution with Q40 quadrupole moments; the two white-red clubs
represent positive charge, while the bellies are alternately positively (white-red) or
negatively (black-red) charged. Top perspective view of a portion of a configuration.

The hexadecapoles are 3D moments

4.3.5 Ground States for Multipoles of odd Symmetry: Oc-
topolar and Dotriacontapolar Patterns

The octopolar moments are unidirectional, i.e. they can be represented as vec-
tors (see Fig. 4.16). The low-temperature configurations consist of moments oriented
in principal directions of the underlying lattice. Hence, the octopolar interaction
introduces not only an easy-plane but also a three- and twofold in-plane anisotropy
respectively. On the square lattice octopoles form lines being aligned antiparallel (such
as in Fig. 4.3a) while on the triangular lattice the domains show parallel alignment
of the moments (Fig. 4.3b). The dotriacontapolar interactions break the isotropic
behavior of dipoles on square and triangular lattices in the same way. Anti-parallel
alignment is one of the ground states of an infinite pure dipolar system on a square
lattice [81] while on its triangular counterpart the ferromagnetic alignment has the
minimal energy. Hence, the octopolar interaction selects some of the dipolar ground
states. The principal difference, however, is that the dipolar energy, because of its
long-range character, can be minimized avoiding free poles in finite samples, i.e. a
vortex on a triangular and a microvortex state on a square lattices are formed (see
Section 4.2.2). In contrast to finite dipolar systems a finite octopolar system is not
sensitive to the formation of free poles in most geometries as octopoles do not interact
with a field but with the field curvature. Therefore, the gain in the internal energy
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Figure 4.16: Hysteresis loops for a 20 × 20 square nanoarray with Q30 = 0.5Q10

and a pure dipolar system (inset (d)). The magnetic field is applied in x-direction.
Insets (a-c) give the central part of intermediate magnetic configurations; (f) and
(e) show stable zero-field configurations for combined multipoles and the pure dipo-
lar case respectively. Thermal energy is kT = 0.6E||. The field is expressed in
µ0MSVd/E|| with µ0 - the permeability of free space and Vd - the volume of a dot

due the compensation of free magnetic poles at the sample boundary is not so strong
as for pure dipolar systems and low-temperature configurations in finite samples are
still parallel lines for a triangular and antiparallel lines for a square lattice.

4.3.6 Combined Multipoles in Nanomagnetic Arrays

As has been shown in the Section 4.3.2 the in-plane magnetized nanodiscs with
height-to-diameter ratio h/a ≤ 0.5 common for contemporary experimental studies
possess dipolar and octopolar moments with Q3/Q1 ≥ 0.5. Hence, for a real nano-
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magnetic array neither pure dipolar, nor pure octopolar configurations are of relevance.
Instead, ground states of an ensemble of combined multipoles should be calculated. Re-
cently, those calculations have been carried out by means of Monte-Carlo simulations
for case of rotationally symmetric multipoles [105]. Arrays of combined multipoles
show maxima of specific heat and susceptibility at the same temperature confirming
the existence of a phase transition. Whereas the zero-temperature ground state on
a square lattice consists of antiparallel lines as in a pure octopolar system, at finite
temperatures alternating regions of uniaxial parallel and antiparallel lines such as in
Fig. 4.17b have been found. The width of regions with parallel lines is usually 2-3
lattice parameters. In ≈ 10% of calculations despite a very long relaxation procedure
superdomains (Fig. 4.16f) appear. On an infinite triangular lattice the ground state
is a ferromagnetic single domain as in pure dipolar system. However, in finite systems
the vortex configuration is never formed for Q3/Q1 ≥ 0.5. Instead, large collinear
domains appear. Hence, the interaction of dipoles with demagnetizing field is still too
weak comparable to the anisotropy induced due to the octopole-octopole coupling.
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Figure 4.17: (a) Internal energy of ideal parallel, antiparallel, coexisting and
superdomain configurations for L = 20 as a function of Q30/Q10 on a square lat-
tice; (b) Size dependence of different contributions of the magnetostatic energy for

parallel (solid lines) and antiparallel lines (scatter graph) for Q30/Q10 = 0.5

In order to understand why the state of coexisting parallel and antiparallel lines
has the lowest internal energy, different energetic contributions (dipole-dipole, dipole-
octopole and octopole-octopole) and the entropy have to be analyzed. The energy of
ideal and MC configurations on a square lattice as a function of Q30/Q10 is plotted in
Fig. 4.17a. All energies are expressed in the pair interaction energy E|| between two

dots magnetized mutually parallel but perpendicular to the bond E|| ∝ 1/RlA+lB+1
AB .

Fig. 4.17b gives size dependence of all energy contributions for parallel lines. It has
been found that the dipole-octopole energy contribution Ed−o is minimal for the par-
allel while maximal for the antiparallel lines. The dipole-dipole (Ed−d) and octopole-
octopole (Eo−o) interactions, in contrast, prefer antiparallel lines. Therefore for sample
sizes L < 9 and Q30/Q10 < 0.8 the state of coexisting parallel and antiparallel lines
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has the lowest total internal energy. For L > 9 the antiparallel lines are preferable
for all Q30/Q10 as the long-range dipolar contribution increases. The energy difference
between antiparallel lines and coexisting phases or superdomains δE grows with in-
creasing Q30/Q10 (Fig. 4.17a). However, for Q30/Q10 < 0.6 δE is very small ≈ 2%,
while the configurational entropy in a system of parallel or antiparallel lines drastically
increases with the system size S = k · ln(2 × 2L). As the entropy increases bound-
less with L, in contrast to the slow convergence of the dipolar sum, the free energy
of the coexistence is lower for non zero temperatures. Formation of superdomains
gives an additional contribution to the entropy. This contribution depends on size
of superdomains. The size of superdomains in finite dipolar systems is driven by the
pole avoidance principle. While the energy cost due to the wall formation increases
only linearly with the domain size, the gain in the long range dipolar interaction in-
creases with the square of the domain size and only a rare formation of superdomains
is observed at low temperatures. The additional entropy for large superdomains is
small. Approaching critical temperature the domain size decreases, the corresponding
entropy increases and the superdomains appear more frequently. This finding is in ac-
cordance with the experiment [110] giving evidence for formation of the large in-plane
collinear domains extending across several dots.

Thus, unlike the non-collinear ground states of pure dipolar systems their odd
multipolar counterparts select collinear configurations from the dipolar manifold. The
reason for this selection is two-fold. First, the octopolar/dotriacontapolar interaction
on a triangular and a square lattice introduces an easy-plane and a tri- and a biaxial
in-plane anisotropy respectively. Second, the pole avoiding principle does not hold
for the octopole-octopole interaction energy contribution. Therefore, systems with
strong octopolar contribution are not as sensitive to the formation of uncompensated
magnetic poles at the sample boundary as systems with dominating dipolar interac-
tions. Despite the collinearity the lattice structure plays an important role. While the
ground state for Q30/Q10 ≈ 0.5 multipoles on a square lattice consists of antiparallel
lines of magnetic moments, the triangular symmetry leads to the parallel ferromagnetic
configuration.

4.3.7 Magnetization Reversal in Nanomagnetic Arrays

Experimental investigations show that in comparison with an infinite film the in-
terparticle interactions usually lead to a decrease of the switching field in patterned
media with out-of-plane magnetization [77, 98, 99] and to an increase of the coercivity
for in-plane magnetized particles [99, 111–113]. Although in some cases an agreement
of switching behavior with theoretical predictions has been obtained, it is often found
that measured switching fields deviate significantly (10-15%) from those expected from
pure dipolar interactions. In the following the field dependence of magnetization in
square and triangular array of dots with in-plane magnetization and Q30/Q10 ≥ 0.5
will be analyzed and compared with hysteretic properties of a pure dipolar system.

Fig. 4.16 shows the magnetization reversal of a square lattice with Q30/Q10 = 0.5
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 H 0=  SH+ SH−
 

Figure 4.18: Snapshots of the central part of an experimental dipolar model on
a square lattice during a magnetization reversal. The magnetic field is changed
from +x to –x direction. The first and the last insets give the central part of
saturated magnetic configurations for positive and negative field respectively. The
central inset shows stable zero-field configuration while two other insets represent

intermediate configurations

corresponding to an array of ultrathin particles with h/2a ≤ 0.5 and for a pure dipolar
system (h/2a ≈ 1, Fig. 4.16d). A pure dipolar system does not show any easy-axis
hysteresis. The reason for that is clear from the Fig. 4.18 where several snapshots of a
hysteresis on a pure dipolar square lattice are shown where the whole magnetization
reversal in an experimental dipolar model is registered. In a pure dipolar case all
magnetic moments rotate coherently. Therefore, the total magnetization decreases
continuously from unity at saturation field HS to zero for H = 0. In a multipolar
array, on the contrary, the hysteresis loop is quite open. The squareness s depends on
the composition, the strength of multipoles and on the temperature. The field is scaled
with E|| described in the previous section. Therefore, contributions from moments
of different order in combined multipoles scale differently with RAB. All values are
given for Q30 = 1, Q10 = 2 and RAB = 1. This gives s ≈ 0.5 and Hcµ0MSVd ≈
0.7E||. By calculating E|| this result can be scaled to a square array of any material
with any interdot distance. For example, for an array of permalloy particles at room
temperature MS = 8 · 105A/m, and vanishing anisotropy K1 < 1000J/m3 with h =
20nm, d = 2a = 70nm and R = 100nm we find Hc ≈ 20mT.

Magnetic moments do not rotate continuously as in a pure dipolar system (see
Fig. 4.16d, Fig. 4.18 and animation Hysteresis(Dipolar).avi) but are reoriented line-
by-line (Fig. 4.16a-c and animation Hysteresis(Multipolar).avi) as noncollinear config-
urations are energetically unfavorable. From our calculations follows that the compe-
tition between the Ed−o and Ed−d+Eo−o interaction energy plays an important role for
the magnetization reversal. As has been already demonstrated in Fig. 4.17a the total
energy of the configuration Fig. 4.16b is close or even lower than that of Fig. 4.16c,
where all chains are antiparallel. Hence, to go from configuration Fig. 4.16b to the
configuration Fig. 4.16c an external magnetic field has to be applied and the hysteresis
then appears. Hc increases with decreasing temperature. This effect is similar to the
superparamagnetic temperature assisted switching. Thus, the hysteretic behavior is
predefined by the competition between the octopole-dipole contribution of the magne-



4.4. Summary 65

tostatic energy and its dipole-dipole and octopole-octopole counterparts. Pure dipolar
systems do not show any significant hysteresis.

On a triangular lattice Hc increases by ≈ 10% compared to the pure dipolar system
in good accordance with experiments [112]. However, the magnetization reversal is
different from that on a square lattice. Hence, the ground sates and the magnetization
reversal in dense packed nanomagnetic arrays is strongly influenced as by order of
magnetostatic interactions as by underlaying lattice symmetry.

4.4 Summary

In conclusion, systematic investigation of multipolar and dipolar low-temperature
stable configurations on a triangular and a square lattice have been carried out theo-
retically. In contrast to previous results we demonstrate that the multipole-multipole
interactions change considerably stable low temperature dipolar states. The dipole-
octopole interaction is an important component that might also explain the superfer-
romagnetic behavior in dense grain magnetic materials and magnetic arrays. Tuning
the multipole moments by changing the geometry of nanoparticles offers a new route to
the control of the coupling behavior and therefore the hysteretic properties of magnetic
nanoparticle arrays.
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Chapter 5

Magnetic Ordering In Quasicrystals

5.1 Introduction

The last few years have shown a major growth in investigations on the spin order in
frustrated magnets, motivated by the dramatic changes in the magnetic properties of
such systems. The phenomenon of geometric frustration is simple and fundamental. It
can be applied to different interactions and is present in a variety of physical systems
like magnets, liquid crystals, protein structures or Josephson junction arrays [114].
A very simple example of local geometrical frustration is the arrangement of three
identical units on an equilateral triangle (Fig. 5.1a). The units are constrained to have
one of two opposite properties (black/white, up/down, on/off etc.) and the energy of
the interaction between any two units is minimized if the two nearest neighbors on the
triangle have different states. The all three elements, however, can by no means all have
different states. Two out of three units will necessarily have the same property. Hence,
the energy of the system cannot be entirely minimized. In case of magnetic or electric
Ising moments, for example, there exist six possible configurations of equal energy
with two units up and one down or vice versa. At equilibrium the system is hesitating
between those six collinear configurations. Vector spins can manage the frustration
better than Ising moments by adopting a noncollinear structure with the spins making
an angle of 120 from each other. The noncollinear solution for a triangular lattice is
known as Néel structure (Fig. 5.1b).

The overwhelming majority of the investigations on frustrated magnets concerns
periodic crystals. One of the first works on the complex order in frustrated anti-
ferromagnets on quasilattices is Ref. [115]. In that paper a renormalization scheme
on the Penrose tiling for a Heisenberg exchange model with competing antiferromag-
netic interactions has been introduced. A phase diagram consisting of a variety of
ordered phases has been obtained. Subsequent study [116] has demonstrated that
frustration leads to a central gap in the density of states for the Penrose lattice. In
studies on quasiperiodic geometries emphasis has been put on collinear configurations
of magnetic moments coupled by the short-range exchange interaction only [117–126].

67
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Figure 5.1: (a) Triangle building block of
a two-dimensional crystal. Red and blue
balls represent atoms or magnetic moments
of different sort coupled by antiferromagnetic-
like short-range interactions. The antiparallel
alignment of all neighboring units is not possi-
ble; (b) Top view of a noncollinear Néel struc-
ture on a triangular lattice. Different colors
represent three sublattices of the Néel config-

uration.

A complete list of literature on ape-
riodic lattice models can be found in
Refs. [127, 128]. Noncollinear struc-
tures and long-range dipolar forces were
traditionally not considered. The sit-
uation has changed at the end of the
last century. In the early nineties
rare-earth-based (RE) quasicrystals have
been discovered [129–131]. The RE-
containing icosahedral alloys of the RE-
MgZn and RE-MgCd families are quite
unique among known quasicrystals as
magnetic moments of 4f electrons of the
RE elements are sizable and well local-
ized (a good collection of the literature
can be found in Refs. [132, 133]). The
hope that the RE-quasicrystals may be-
come magnetically ordered at low tem-
peratures evoked a considerable number
of experimental and theoretical investi-
gations of magnetic behavior on non-
periodic lattices.

A first experimental finding of long-
range antiferromagnetic order in rare-
earth icosahedral quasicrystals [134]
turned out to be an artefact [135, 136].
However, it gave a power stimulus to fur-
ther theoretical and experimental inves-
tigations of magnetic ordering in aperi-
odic structures. Although the atomic
and electronic structure of rare earth qua-
sicrystals is not completely understood,
it has been postulated [137] that the
low-temperature microstructure of such
a magnet resembles geometrically frus-

trated but site-ordered magnetic systems and consists of weakly interacting magneti-
cally ordered clusters. Another interesting approach is based on recent elastic neutron
scattering experiments on a Zn-Mg-Ho icosahedral quasicrystal [138]. This reveals a
very peculiar diffuse scattering pattern with icosahedral symmetry at temperatures
below 6K. In contrast to the Ref. [137], the authors interpret the diffraction pattern
as that of several interpenetrating quasiperiodic sublattices, where all spins point in
the same direction [139]. There are very helpful for the understanding of real-space
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magnetic configurations leading to those long wave vector correlations coming from
a noncollinear spin arrangement suggested by Lifshitz from pure geometrical consid-
erations [140]. Recent interesting results for quantum spins on the octagonal tiling
[141–143] and systematic calculations of the noncollinear magnetic ordering on eight-
and ten-fold quasiperiodic tilings are seen in [139, 144, 145]. Distinct from the the-
oretical spin models including only short-range interactions is a calculation of the
ground state of a long-range dipolar quasiperiodic magnet [146]. The calculation of
the dipole-dipole interactions in quasiperiodic structures is important as for the RE-
based quasicrystals, as is the case for magnetostatically coupled nanoarrays. In the
following, the influence of the structural quasiperiodicity on the antiferromagnetic and
dipolar magnetic ordering will be reviewed.

5.2 Quasiperiodic Tilings

Starting from the famous pattern of Roger Penrose many different ways have
been discovered to tile a plane non-periodically with a similar set of regular poly-
gons [147, 148]. Later many of these purely mathematical constructions have found
their realisations in real materials. The work on quasicrystals has opened up the way
to the very wide field of quasicrystals approximants [149]. Nevertheless two most pop-
ular among quasiperiodic tilings remain the ten-fold Penrose [150] and the eight-fold
Ammann-Beenker [151] structures.

The Penrose pattern consists of two rhombuses with edges of length a, one with
angles of 36◦ and 144◦ and the other with angles 72◦ and 108◦ (Fig. 5.2). The rhombic
tiles are arranged without gaps or overlaps according to matching rules [150]. Alterna-
tively, the planar Penrose tiling can be generated using a single kind of tile, a decagon
[152–156]. Every decagon consists of Penrose rhombuses. In contrast to periodic lat-
tices a decagonal atomic cluster can share atoms with its neighbors. The overlapping
rules have been mathematically proven [153]. Only two types of the overlap (A and B)
are allowed [152]. Location of ”A” and ”B” in a Penrose lattice are marked in Fig. 5.2.
The octagonal tiling is made out of two other motifs: a square and a rhombus of equal
edge lengths (Fig. 5.3a) with the angles of π/4 and 3π/4 for the rhombic tile.

5.3 Peculiarities of Magnetic Coupling

in Quasiperiodic Structures

The quasicrystals can be structurally ranked in-between the periodic lattices and
completely disordered media. In contrast to periodic crystals, in quasicrystals the
number of nearest neighbors varies widely from one point to another like in disordered
matter. The Penrose tiling [150], for example, has atoms with coordination number
changing from 3 to 7. Hence, the energy per magnetic moment also varies. Unlike the
disordered media, however, this variation exhibits a long-range orientational order,
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Figure 5.2: (a) A section of the Penrose tiling. The original Penrose rhombic tiles and
the decagonal tiles are indicated. Two allowed overlapping of decagonal clusters are shown
as A and B. (b) The original Penrose rhombic tiles. Five nearest neighbor distances (the
sides and the diagonals of the rhombuses) and their lengths are given. τ is the golden mean.
The two strongest exchange bonds according to two shortest nearest neighbor distances are

denoted as J and J ′.

(a)

(b)

1
E

J
= −3

E

J
= −5

E

J
= −6

E

J
= −7

E

J
= −8

E

J
= −

A B C D E F

Figure 5.3: Configurations for a frustrated Ising antiferromagnet on (a) elementary tiles and
(b) six local environments of the Ammann-Beenker tiling. Bold lines denote the frustrated

bonds. The open and filled circles represent different spins.
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i.e. any finite section of a quasicrystal is reproduced within a certain distance. In
particular, fivefold symmetry, forbidden in conventional crystallography, can be ob-
served in the diffraction patterns. Thus, the magnetic ordering in quasicrystals should
be different from the collinear magnetism of periodic crystals and from spin-glass-like
behavior of the disordered media.

The antiferromagnetic system on a quasicrystalline tiling can be geometrically frus-
trated as every rhombic tile consists of two triangles. The frustration in quasicrystals
is different from that of periodic systems and that of disordered media. In highly or-
dered magnets the frustration is uniform, i.e. equal for all lattice points. In disordered
materials the frustration is random. In quasicrystals the change in coordination num-
ber leads to spatial alternation of the exchange or the dipolar energy and, thus, the
degree of frustration. However, the non-uniform magnetic frustration is not random.
The non-uniform geometrical frustration is the second important ingredient for the
definition of the magnetic microstructure in quasicrystals.

The exchange coupling in quasicrystals is also different from that of their periodic
counterparts. Atoms on quasi-periodic lattices have not only varying number of neigh-
bors but also several different nearest-neighbor distances (Fig. 5.2, 5.3). Accordingly,
there are several different values of the exchange force which can even change sign.
The existence of several exchange constants J can also exert a significant influence on
the microstructure of the quasiperiodic magnets.

In summary, it is obvious that the varying number of nearest neighbors, non-
isotropic magnetic frustration and varying J-constants are important for the magnetic
ordering in quasiperiodic ultra-thin films. In the following a general spatial resolved
description of the magnetic ordering on two-dimensional quasiperiodic tilings will be
discussed.

5.4 Computational Details and an Experimental

Model

Since a magnetic structure on a quasicrystalline tiling is not periodic, an analytical
description of the micromagnetic structure is hardly feasible. Therefore Monte-Carlo
simulations are often utilized to find equilibrium spin configurations at a given tem-
perature. Usually in the Monte-Carlo simulations only local exchange interactions
have been considered [115, 117–126]. Here a more universal calculations with the local
ferromagnetic or antiferromagnetic exchange interaction and the long-range dipolar
coupling will be discussed [139, 144–146]. In most rare earth intermetallic compounds
an oscillatory (RKKY - like) exchange interaction has been observed [157]. A theoret-
ical treatment of RKKY systems is still lacking. This review is concentrated on studies
of exponentially decreasing exchange coupling corresponding to a rapid-decaying limit



72 5. Magnetic Ordering In Quasicrystals

of an oscillatory interaction. We discuss the Hamiltonian given by

H = Jij

∑

〈i,j〉
Si · Sj + D

∑

ij

(

Si·Sj

r3
ij

− 3
(Si·rij)(Sj·rij)

r5
ij

)

− K1

∑

i

(Sz
i )

2 , (5.1)

where Si is a three- or two-dimensional unit vector in the case of classical vector or
xy-spins, and Sz

i is equal to ±1 in the case of Ising spins (so Sx
i = Sy

i = 0); 〈i, j〉
denotes the nearest neighbor pairs. For an antiferromagnetic system, the exchange
parameter Jij is positive, and neighboring antiparallel spins contribute a lower energy
than parallel neighbors. For a ferromagnetic system Jij is negative and the parallel
orientation of neighboring moments is favorable. The coefficient K1 is the first-order
anisotropy constant. The Monte-Carlo simulations have been carried out on finite
Ammann-Beenker [151], Penrose, Anti-Penrose [150], Tübinger Triangular [158] and
Tie-Navette [159] tilings with free boundary conditions. The procedure is a simulated
annealing method with at least 15 successive temperature steps [139, 146]. At each
temperature, the convergence of the relaxation process towards equilibrium has been
observed for any initial configuration after a few thousand Monte Carlo steps per spin.
Hence, the single-spin-update algorithm is efficient in this case. At the end of the
cooling down process, the total energy is just fluctuating around its mean equilibrium
value. To reduce boundary effects only the core of a tiling has been analyzed. The
samples, which will be addressed in what follows, are circular, containing of order of
53000 magnetic moments. The dipolar interaction of each magnetic moment with all
the other moments has been considered.

In order to calculate the exchange energy the set of nearest neighbors that are
coupled via the short-range interaction has to be defined. In periodic crystals the
exchange coupling between next nearest neighbors is usually enough to ensure the
magnetic order. In quasicrystals the situation is different. The pattern consists of
two motifs with edges of equal length a (Figs. 5.2, 5.3). The diagonal bonds are often
neglected in the calculations. With such a treatment of bonds the lattice deviates
from the original tiling. This disregard is physically questionable as the exchange cou-
pling increases exponentially with decreasing interatomic distance. In investigations
reviewed here, the short diagonal of the rhombus and the sides of the motifs for all
tilings have been considered as nearest neighbors.

The simulation results will be compared with an original experimental dipolar
system made of 309 small magnets on the Penrose lattice. The experimental system
represents a pure dipolar model which corresponds to the numerical simulations for
zero exchange interaction. It concerns a 480mm x 480mm Penrose lattice of magnets of
4 mm length separated by 30 mm. The large distance between the magnets is chosen
on purpose to minimize multipolar terms that can trap the system into metastable
states. The magnets are put onto nonmagnetic vertical axes and can rotate in the x, y
plane.
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5.5 Magnetic Ordering in Two-Dimensional Qua-

sicrystals

5.5.1 Dominating Ferromagnetic Interactions

It seems that the ferromagnetic interaction cannot bring new interesting physics as
its ground state should be a relatively simple ferromagnetic single domain. Recently,
however, it has been demonstrated [146] that in quasicrystals the situation may be
more involved than is usually expected. In this study Ref. [146] five different values
of the exchange constant, i.e. for the sides and all diagonals of the rhombuses, have
been considered. J has been taken to be unity. The exchange interaction decreases
exponentially with the distance between magnetic moments. The strength of the
exchange interaction has been defined as Jij = J exp(1 − ρij), where ρij = rij/a is
the distance between two neighboring moments normalized to the length of the side
of the rhombuses a. ρij takes the lengths of the diagonals of the Penrose tiles. The
shortest diagonal has a length of ρij = τ−1 < 1 with τ - the golden mean. Therefore
J ′ = J exp(1− τ−1), i.e. J ′ is larger than J . Further interactions become weaker than
J with increasing distance as in that case ρij > 1.

According to the Mermin-Wagner theorem [160], no long-range order exists in
two-dimensions with continuous symmetry, because thermal fluctuations result in a
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Figure 5.4: Top-view of the portion of the quasi-
ferromagnetic spin configuration in a sample of fi-
nite size for ρ = 1.176aτ and R = J/D = 5. The
magnetic moments are nearly coplanar to the sides
of the decagons. The X-component of the average

magnetization is MX = 0.85.

mean-square deviation of the spins
from their equilibrium positions
which increases logarithmically with
the size of the system. The addi-
tion of a very weak anisotropy stem-
ming e.g. from the dipolar interac-
tions does not change the distribu-
tion of the exchange energy, but per-
mits the anchoring the absolute spa-
tial orientation of the magnetization.
Magnetic ordering depends on the
ratio of exchange to dipolar constant
R = J/D and on the radius of the
cut-off in the exchange coupling (ρ).
In the quasiperiodic Penrose lattice
with high R, i.e. with the strong ex-
change interaction, a single domain
for all cut-off radii ρ ≥ a is found.
It means that the exchange coupling
acting along the two shortest bonds
(J and J ′) is enough to ensure the
ferromagnetic order. However, the
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degree of magnetic order increases remarkably with increasing ρ. While the average
magnetization per moment at low temperature (J/kT = 100) and high ratio R = 103

is almost unity for the exchange cut-off radius ρ = 1.176aτ it is only M̄1 = 0.975 for
ρ = a.

Hence, in contrast to periodic lattices the ferromagnetic order in quasicrystals
depends strongly on the cut-off radius in the exchange interaction. In case of small ρ
high magnetic frustration of the quasiperiodic structure leads to significant deviation
of the average magnetization from unity even for very high R - ratios. An example of
a ferromagnetic configuration on a Penrose tiling is shown in Fig. 5.4.

5.5.2 Dominating Antiferromagnetic Interactions

In the recent theoretical study [139, 145] we have derived stable low-temperature
magnetization configurations on different quasiperiodic tilings. The results obtained
provide an explanation for the origin of the antiferromagnetic modulations observed
experimentally in Ref. [138]. While the spin order in antiferromagnets is usually char-
acterized by a periodic modulation described by wave vectors on the order of in-
verse atomic distances, the spin order in antiferromagnetic quasicrystals admits three-
dimensional noncollinear structures consisting of several interpenetrating subtilings
with longer wave vectors. First the details of the low-temperature antiferromagnetic
ordering on the octagonal tiling will be given. Then the results will be generalized for
other tilings as well.

The short diagonal of the rhombus and the sides of the octagonal motifs have
been considered as nearest neighbors. We distinguish the two cases Jd > 2J and
Jd < 2J , where Jd denotes the interaction along the short diagonal and the interaction
strength along the sides J is unity. The first case corresponds to a rapid growth of
the exchange coupling with decreasing interatomic distance. The two nearest-neighbor
bonds form six local environments with coordination numbers varying from 5 to 8 as
shown in Fig. 5.3(b). They occur with relative frequencies νA = 17 − 12

√
2 ≈ 2.9%,

νB = −41 + 29
√

2 ≈ 1.2%, νC = 34 − 24
√

2 ≈ 5.9%, νD = −14 + 10
√

2 ≈ 14.2%,
νE = 6 − 4

√
2 ≈ 34.3%, and νF = −1 +

√
2 ≈ 41.4%. Taking into account the short

diagonals of the rhombic tiles increases the average coordination number of the tiling
from 4 (the value without diagonals) to 8νA +7νB +6νC +5(νD +νE +νF ) = 8−2

√
2 ≈

5.17.

Ising spins

The square tile of the octagonal structure is non-frustrated as every pair of the
moments can be chosen to be antiparallel (Fig. 5.3a). If we had not taken the short
diagonals of the rhombic tiles into account, the same would be true for the entire
tiling, and there would be no frustration, because the rhombic tiling is bipartite.
Now, we consider spins on short diagonals as nearest neighbors, the rhombic tiles
are always frustrated. If the energy of one nearest neighbor pair is minimized by
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having antiparallel spins, the third and forth spins cannot be chosen to minimize the
energy of both of its neighbors (Fig. 5.3a). The magnetic moment will necessarily be
parallel to one of the neighbors. For Jd < 2J two out of six possible configurations
have smaller energy as they possess only one pair of parallel nearest neighbors per
rhombus instead of two (Fig. 5.3a). In this case spins can have one of six possible
energy values corresponding to different local environments (Fig. 5.3b). For Jd > 2J
the four configurations with two parallel bonds have lowest energy as their weight is
smaller than that of the strong diagonal coupling. The second case comprises much
more different possibilities of energy distribution. To give a quantitative description
of the local frustration we introduce a local parameter f = |Eid|−|Ei|

|Eid| , where Ei is an
actual energy of a spin i and Eid is a ground state energy of a relevant unfrustrated
vertex. With this nomenclature, only the central spins of the vertices F and E are
magnetically frustrated fF = 0.4 and fE = 0.8 for Jd = J < 2J . The Monte-Carlo
simulations confirm our reasoning based on the analysis of frustration. Fig. 5.5a gives
the frequency distribution of the exchange energy per atom E for two cases and a
top-view of a portion of Ising configuration with Jd > 2J .
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Figure 5.5: The frequency distribution of the energy per spin on the octagonal
tiling for (a) Ising and (b) vector spins. Solid lines correspond to the case Jd < 2J ,
dashed lines to Jd > 2J . Purely antiferromagnetic interaction at kT = 0.01J is
considered. Top-views of portions of Monte-Carlo configurations with underlying
tilings are shown as insets. The light and dark circles represent different spins in

(a) and different energies in (b), respectively.

The energy distribution for Jd < 2J simply reproduces the frequency of 6 vertex
configurations. The ”up” and ”down” configurations are perfectly ordered and coincide
with the black-and-white model of Niizeki [161]. For large Jd we find 8 possible energy
values. The ”up” and ”down” subtilings, however, are spatially disordered (see inset
Fig. 5.3a).
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We have calculated the magnetic structure factor

Szz(k) =
1

N

∑

r,r′

eik·(r−r′) 〈Sz
rS

z
r′〉 (5.2)

using the Monte-Carlo data for different samples. Here k is the wave vector and Sz
r is

a vertical component of a magnetic moment at the position r. The diffraction pattern
of the Niizeki configuration coincides with that of quantum Monte-Carlo calculations
(Fig. 5c,d of Ref. [141]) and theoretical prediction [162], while the intensity map of
the configuration Fig. 5.5a is almost structureless. It means that Ising solution with
Jd < 2J reproduces in essence the antiferromagnetic superstructure, corresponding to
a modulation vector q = (1

2
, 1

2
, 1

2
, 1

2
)a∗ [138] in the octagonal tiling, whereas stronger

coupling leads to a spin-glass state.

Vector spins

An exciting question is if the further minimization of the total energy and frustra-
tion by means of the noncollinear alignment of magnetic moments is possible. At first
glance the magnetic structure of the low-temperature pure antiferromagnetic config-
uration seems to be rather disordered. The analysis of the local energies, however,
reveals several characteristic energetic maxima in the frequency distribution shown in
Figs. 5.5b and 5.6. The simple existence of the peaks means that there exist different
sorts of magnetic moments having well-defined relative orientation to their nearest
neighbors. This orientation, however, is not associated with any absolute direction in
space. Therefore, in accordance with the Mermin-Wagner theorem, no long-range or-
der exists in two-dimensions with continuous symmetry, because thermal fluctuations
result in a mean-square deviation of the spins from their equilibrium positions which
increases logarithmically with the size of the system.

The addition of a very weak anisotropy, which often exists in real samples, does
not change the distribution of the exchange energy, but permits to anchor the absolute
spatial orientation of the magnetization. Nevertheless, the total structure still looks
spin-glass like. In the following it will be shown that the antiferromagnetic structure
on quasiperiodic tilings is ordered but the order is non-trivial and unusual for periodic
crystals. We concentrate further description on 3D vector spins while similar results
for xy-spins have been obtained.

To obtain an absolute symmetry axis, we apply a very weak out-of-plane anisotropy
K1 ≈ 10−3J to the system. The squared vertical component of magnetization (Sz)2

becomes finite. The positions of the energy peaks on the frequency diagram remain
unchanged. All maxima are different from those of the Ising model. It means that
the angles between the neighboring magnetic moments are not always equal to 180◦

or 0◦, i.e., the magnetic structure is noncollinear. The different number of peaks —
eight for Jd < 2J and two for Jd > 2J (Fig. 5.5b) — already tells us that, in contrast
to the Ising case, the maxima do not coincide with the 6 vertices of the tiling. The
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Figure 5.6: The frequency distribution of the energy per spin on the Tübingen
triangle (a), Anti-Penrose (b), Penrose (c) and Tie-Navette (d) tilings for classical
vector spins. A purely antiferromagnetic interaction J at a temperature kT = 0.01J
is considered. The insets (a-c) give calculated Bragg scattering of Sy component
of magnetization for subtilings composed of magnetic moments belonging to peaks
with −6 < 〈E〉

spin < −4. The scale goes from -6 to 6 k
Sy
x,y/π. The inset (d) gives a

portion of the stable magnetic configuration on the Tie-Navette tiling as described
in the text. Dark and light grey arrows denote antiparallel magnetic moments.

minimal possible local energy increases from −8J to approximately −6J for Jd = J
or −5.44J for Jd = 2.2J . The average energy per spin, however, decreases by more
than 0.3J and reaches the value of E ≈ −2.85J and E ≈ −3.30J respectively. Hence,
the increase of the entropy permits to minimize the average frustration and the total
energy of the system. Similar discrete energy spectrum has been found for other tilings
as well (see Fig. 5.6). The number and positions of peaks variate for different tilings
but the discrete character remains. Spatial arrangements of the magnetic moments
as a function of the exchange energy for Penrose, Anti-Penrose, Tübinger Triangular
and Tie-Navette tilings are given in Fig. 5.7. While spatial arrangements of different
subtilings in the Fig. 5.7 are encoded in colors, for an octagonal tiling they are shown
separately in Fig. 5.8.

Each configuration in Fig. 5.8 or each shade of grey in Fig. 5.7 represents a certain
energy range corresponding to one of the peaks in the spectrum of Fig. 5.5b, 5.6. In
Fig. 5.8 colors represent the x-projection of the magnetization. The magnetic moments
form 8 subtilings of different energy (E1, . . . , E8) which generally do not coincide with
a specific vertex type. The splitting of the energy and frustration levels is described
in detail in Fig. 5.8. For example the vertices B and C (see Fig. 5.3) belong to
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Tübinger Triangular Anti - Penrose 

Penrose Tie-Navette 

Figure 5.7: Energy maps for classical vector spins on Tübingen triangle (a), Anti-
Penrose (b), Penrose (c) and Tie-Navette (d) tilings. The circles give positions of
magnetic moments. Different shades of grey denote different energies corresponding
to the peaks in figure 5.6. Purely antiferromagnetic interaction with J = 1 for all

rij ≤ 1 at kT = 0.01J is considered.

the same energy maxima E2 but have different local frustration fB = 0.24, fC = 0.11
(Fig. 5.8). At the same time the central spin of the vertex D can have either the energy
E3 or E4 and, therefore, can have two different values of the frustration fD1 = 0.01
and fD2 = 0.11 depending on local surroundings. Thus, every configuration of the
Figs. 5.8, 5.7 can enclose either a part of the atomic places belonging to one vertex
type or two different vertex types together. Nevertheless all subtilings are spatially
ordering. Each subtiling can be separated into the energetically degenerate ‘right’ and
‘left’ parts which also have a perfect quasiperiodic arrangement. Fig. 5.9 shows a per-
spective view of a portion of typical Monte-Carlo configuration for the Penrose and the
octagonal tiling. The corresponding configurations represent the characteristic Pen-
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Figure 5.8: Spatial distribution of magnetic moments belonging to eight subtilings
of a noncollinear configuration on an octagonal tiling consisting of 2193 spins. Jd >
2J . The light and dark circles represent positive and negative x-components of the
magnetization. The in-plane components are not given for the sake of simplicity.
Average values of the exchange energy E and the local frustration f per spin are

indicated.

rose and Amman-Beenker ‘stars’, which are also shown in figure 5.9 for clarity. On the
Penrose tiling, the ‘star’-pattern can easily be recognised in the magnetic structure,
because the moments belonging to the perimeter of enclosed ‘stars’ show perfectly
antiparallel alignment. On the octagonal tiling, the situation is more complicated.
The central magnetic moment is neither parallel nor antiparallel to the neighbouring
magnetic moments. Its eight nearest neighbours have different sets of mutual angles.
The moments forming the next ring have still another orientation with respect to
their nearest neighbours. The noncollinear alignment of the neighbouring moments
indicates that the system is geometrically frustrated, i.e. there is no possibility to
align all neighbours in an antiparallel arrangement. Similar noncollinear antiferro-
magnetic configurations are formed in the Tübingen triangle and Anti-Penrose tilings.
Within the examples of tilings considered here, the Tie-Navette tiling represents an
exception. The magnetic structure observed for this geometry consists of two antifer-
romagnetically aligned quasiperiodic sublattices, as shown in figure 5.6d. This means
that every pair of nearest neighbouring moments can be aligned antiparallell, i.e. the
antiferromagnetic configuration is not frustrated.

The diffraction pattern of a quasiperiodic antiferromagnetic system is more com-
plex than that of the Ising or the quantum-mechanical [141] model. As the spin
structure is noncollinear, not only the structure factor Szz, but also Sxx and Syy can
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Figure 5.9: Perspective view of a portion of a Monte-Carlo configuration on the
Penrose tiling (top) and the octagonal tiling (bottom). Top views of the corre-
sponding patches are shown on the right. The magnetic moments are represented

as cones.

be recognized. The calculated Syy Bragg maps for different tilings are given in the
insets to the Fig. 5.6 whereas diffraction patterns for all three magnetization compo-
nents of an octagonal tiling are presented in Fig. 5.10. The eightfold Sxx and Szz

patterns contain additional long wave-vector peaks which could not be identified in
the previous investigations [141]. In dependence on the anisotropy (or on the initial
random configuration for K1 = 0) new peaks also occur in Syy. The Bragg reflexes
found in study [139] select a subset of the wave vectors given in Ref. [140] where
n1 + n2 + n3 + n4 is odd. Peaks with n1 + n2 + n3 + n4 even are extinct. Ac-
cording to the nomenclature of Ref. [162], the following wave vectors can be iden-
tified: (1, 0, 0, 0), (1,−1, 1, 0), (3,−2, 1, 1), (3,−1,−1, 2), (1, 1,−1, 0), (1, 0, 1,−1),
(0, 2,−1, 0), (0, 0, 1,−2), (−1, 0, 1,−3), (0, 2,−2, 1), (0, 1,−2, 2). Hence, the non-
collinearity of the spin structure gives rise to selection rules different from those of
collinear models [140, 141].
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Figure 5.10: The calculated Bragg scattering of Sx, Sy and Sz component of mag-
netization for the antiferromagnetic superstructure. Reflexes indicated by arrows

are new in comparison to previous studies.

5.5.3 Dominating Dipolar Interaction

Fig. 5.11 shows examples of relaxed magnetic configuration for pure dipolar inter-
actions obtained in the numerical (Fig. 5.11a) and in the experimental (Fig. 5.11b)
model. Both studies show that after different relaxation procedures a micromagnetic
pattern can have different local arrangement of dipoles. The total energy, however, is
always identical. Thus, the ground state in case of J = 0 is highly degenerate. All
patterns, theoretical and experimental, have features in common. Magnetic moments
are ordered in circular loops. The diameters of the loops are identical all over the
sample. The loops overlap. This overlapping is not accidental but follows certain
rules. Amazingly, these rules coincide with the recently proposed ”decagonal model”
of quasicrystals described in the section 5.2.

The decagons can be easily recognized in the magnetic microstructure of the nu-
merical and the experimental model (Fig. 5.11a,b). In order to minimize the dipolar
energy the magnetic moments located on the perimeter of a decagon form closed
chains. The moments are coplanar to the sides of the decagons. The overlapping rings
of magnetic moments can have the same or opposite sense of rotation. The orientation
of the moments that do not belong to the perimeter of decagons is highly frustrated
and varies from cluster to cluster. The overlapping magnetic decagon-chains form a
quasiperiodic pattern. Thus, in case of pure dipolar interaction the magnetic pattern
is formed on the scale of the lattice constant, i.e. a microscopic pattern is formed. In
zero magnetic field this state is degenerate and represents a manifold of quasiperiodic
spin configurations.
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(a) (b) 

Figure 5.11: (a) Monte-Carlo simulations. Top-view of the portion of the
magnetic structure in a sample of finite size for pure dipolar interaction, i.e.
R = J/D = 0. The microstructure has been obtained for a square sample of about
10500 vector spins on the Penrose lattice for D/kBT = 100. The spins belonging
to the perimeter of decagons (marked) form closed chains. The chains overlap ac-
cording to rules given in Fig. 5.2. (b) Experimental model. The perspective view
of the magnetic microstructure. The red arrows represent the orientation of dipolar
moments of magnets fixed onto the nodes of the Penrose tiling (rhombuses). The

magnets can rotate in the horizontal plane.

5.5.4 Analysis of Stability

The most interesting features of the decagonal structure relate to its stability. To
see the time-dependent changes in a magnetic structure in the simulations an extremely
slow annealing procedure has been applied in the Monte-Carlo simulations Ref. [145].
The overlapping rings of magnetic moments have been found to be very stable. The
decagons can have the same or opposite sense of rotation. However, once the sense
of the rotation has been chosen it remains unchanged. The magnetic moments inside
of the ring seem to be disordered. In zero magnetic field this state is degenerate and
represents a manifold of spin configurations. Orientations of disordered dipoles are not
static at temperatures kT > 0.2D. They change continuously during the Monte Carlo
run while the decagon chains remain stable and the total energy oscillates around its
minimal value. In the experimental model the temperature has been simulated by
application of an alternating magnetic field. When a very weak field is applied the
magnetic moments inside of the rings begin to oscillate. The moments on the perimeter
of decagons, in contrast, remain stable to very high values of the field (of order of 1 T).
In addition to the alternating magnetic field a constant external magnetic field can be
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Figure 5.12: Two snapshots of a decagon from the experimental model Fig. 5.11
for different strength of the applied permanent in-plane magnetic field: (a) H = 0,
(b) H > 1 T . Frustrated moments (highlighted) change their orientation while the

ring remain stable.

also applied to the structure (see the snapshots for different fields in Fig. 5.12). Even a
strongest possible in-plane magnetic field was not enough to destroy the experimental
decagonal pattern while the frustrated inner dipoles were immediately aligned (see
Fig. 5.12b). In the simulations the field necessary for the alignment of the chains must
be at least an order stronger than that needed for the alignment of the frustrated
moments. Thus, in the quasiperiodic magnetic structure the stable decagonal pattern
coexists with highly frustrated, glass-like phase.

Usually frustrated systems have either a continuously degenerated, periodic ground
state (antiferromagnetic spins on a honeycomb, a kagome, a triangular, a pyrochlore
lattice) or a completely disordered one (spin glasses). The superposition of both types
of frustration has not been reported neither for periodic nor for disordered systems.
Thus, a magnetic system on a Penrose tiling belongs to a new class of frustrated
systems where the degenerated ground state is aperiodic and consists of two parts:
ordered decagon rings and disordered spin-glass-like phase inside the decagons. The
Penrose tiling is no exception. The coexistence of ordered and frustrated parts is
characteristic for dipolar or antiferromagnetic ensembles on many of aperiodic tilings.
Two examples are given in Fig. 5.13.

5.6 Summary

In conclusion, magnetic ordering on quasiperiodic tilings for dominating ferromag-
netic, antiferromagnetic and dipolar interactions has been reviewed.

It has been shown that vector spin system with antiferromagnetic coupling on dif-
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Figure 5.13: Portions of the low-temperature pure dipolar configurations for an
Anti-Penrose (a) and a Tie-Navette (b) tilings. The color scheme defines an average
energy per magnetic moment: from lowest energy (red) to the highest energy (dark

blue). Red moments are stable while the blue ones frustrated.

ferent quasiperiodic tilings is locally frustrated. All spins can be divided into several
quasiperiodic (in our two-dimensional physical space) or periodic (in the corresponding
four-dimensional periodic hypercrystal) subtilings of different energy, which generally
do not coincide with a specific vertex type. The vector spin system admits a three-
dimensional noncollinear magnetic structure. The noncollinearity of the magnetic
configuration permits to minimize the degree of frustration and the total energy of
the system in comparison with the collinear case. The co-directional spins of every
subtiling reveal quasiperiodic ordering with a wave vector which is specific for a given
subtiling. The Tie-Navette tiling is not frustrated and admits collinear magnetic con-
figurations. For the short-ranged exchange interaction, this arises as a consequence of
the bipartiteness of the graph formed by connecting interacting pairs of spins; how-
ever, we observe that the antiferromagnetic order persists for the case of a long-range,
exponentially decreasing exchange interaction.

A ferromagnetic ordering in quasicrystals depends on the range of the interac-
tion. For the ferromagnetic exchange of a very short range the average magnetization
deviates significantly from the unity.

For pure dipolar interaction the magnetic pattern is highly degenerate. That state
represents a new class of frustrated systems where the structure is aperiodic and con-
sists of ordered, stable parts and an unstable, spin-glass phases.
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Magnetic microstructure of the spin reorientation transition
E. Y. Vedmedenkoa) and H. P. Oepen
Institut für Angewandte Physik, Universita¨t Hamburg, Jungiusstr. 11, D-20355 Hamburg, Germany

J. Kirschner
Max-Planck Institut fu¨r Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany

The scenario of the magnetization reorientation in second-order perpendicular anisotropy
approximation is theoretically studied by means of Monte–Carlo simulations. The microstructure is
investigated as a function of the difference between first-order anisotropy and demagnetizing energy
Keff5K12ED and the second-order anisotropyK2 . An influence of the second-order perpendicular
anisotropy on the spin reorientation transition is found whenKeff vanishes. The broadening and
coalescing of domain walls found earlier forK250 is prevented by positiveK2 . The domain wall
width and energy are determined byK2 . For K2.0 the transition via a canted vortex-like structure
is found which yields the smooth, continuous connection between the vertical domain structure and
the vortex structure with in-plane magnetization. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1357154#

Experiments on spin reorientation transition in ultrathin
films have revealed that the magnetic microstructure deter-
mines to a large extent the magnetic behavior of the
system.1–5 Theoretically, the microstructure of the spin reori-
entation transition~SRT! has been investigated in first-order
approximation of perpendicular magnetic anisotropy.6–8 In
recent years, the importance of higher-order anisotropy con-
tributions for SRT in ultrathin magnets has been pointed
out.9–13 Phase diagrams were put forward.11,12,13 In con-
tinuum approximation,11 the reorientation either through the
canted phase or through the phase with coexistence of in-
plane and vertical magnetization has been postulated. The
evolution of the magnetic microstructure caused by higher-
order perpendicular anisotropies, however, was not studied.

In this article, we present a spatially resolved description
of the magnetization reorientation in the framework of com-
peting dipolar, first- and second-order perpendicular anisot-
ropy energies for a given exchange coupling. For this pur-
pose, Monte–Carlo~MC! simulations have been performed
to find the equilibrium spin configuration at a given tempera-
ture. The approach is more general than the models6,12 as
neither a restriction to one dimension is made nor a particu-
lar domain structure and wall profile is assumed. The Hamil-
tonian of the problem includes exchange, dipolar interac-
tions, and perpendicular anisotropy of the first and the
second order

H52J(
^ i , j &

Si "Sj1D(
i , j

S Si "Sj

r i j
3 23

~Si "ri j !~Sj "ri j !

r i j
5 D

1K1(
i

sin2 u6K2(
i

sin4 u, ~1!

whereJ is the exchange coupling constant which is nonzero
only for nearest-neighbor spins,D the dipolar coupling pa-
rameter andr i j the vector between sitesi and j. The coeffi-
cients K1 and K2 are correspondingly the first- and the

second-order anisotropy constants. Via scaling arguments the
realistic effective values for the ratio of dipolar to exchange
interactions can be achieved by considering spin blocks of
appropriate size.14 For the extended MC computations, we
take a monolayer of classical magnetic moments on a regu-
lar, triangular lattice of about 10 000 effective magnetic sites.
This corresponds to a surface orthogonal to thec axis of a
hexagonal-close-packed lattice or to the~111! surface of a
face-centered-cubic structure. The magnetic moment is de-
scribed by a three-dimensional vectorS of unit length. The
MC procedure is the same as in Ref. 8. To avoid artificial
periodic patterns, we use open boundary conditions.

We have studied the magnetic microstructure in the an-
isotropy space of the system. The latter is represented by the
difference between first-order anisotropy and demagnetizing
energy Keff5K12ED and the second-order anisotropyK2

~Fig. 1!. PositiveKeff and K2 favor vertical magnetization
while the negative energies impose an in-plane state@see Eq.

a!Electronic mail: vedmedenko@physnet.uni-hamburg.de

FIG. 1. Micromagnetic phases of a monolayer of classical magnetic mo-
ments as a function of the difference between first-order anisotropy and
demagnetizingenergy Keff5K12ED and the second-order anisotropyK2 .
The linesK2521/2Keff andKeff50 separate vertical, canted, in-plane, and
coexistence phases~see the text!. The reorientation transition is character-
ized by the evolution of magnetic microstructure between vertical and in-
plane phases.

JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 11 1 JUNE 2001
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~1!#. In the region of ‘‘vertical’’ magnetization~Fig. 1!, we
find the following microstructure. Macroscopic domains with
vertical magnetization appear forK2.21/2Keff . The results
are the same as found before forK250.6,8 In the interval
0.2ED,Keff,0.5ED more and more vertically magnetized
domains appear and become smaller with decreasingKeff .
The domain walls, on the other hand, become broader with
decreasingKeff ~similar to Ref. 8!. In the close vicinity of
Keff50 (0,Keff,0.2ED) the width of the domain walls is
determined mainly byK2 . This width is finite in contrast to
the first-order anisotropy approximation. The stronger the
second-order anisotropy the narrower are the walls. This
means thatK2 substitutesK1 in the definition of wall width
and energy.15 At Keff50 andK250, adjacent walls touch and
no vertical domain persists anymore. The microstructure
consists of moments of spatially varying orientation. The ar-
rangement of the magnetic moments is illustrated in the cen-
tral inset of Fig. 1. The magnetization rotates in a helicoidal
form along all three principal axes. The structure formed is
called the twisted phase. At this particular point, the mag-
netic moments are evenly oriented in all directions which is
characteristic of the twisted configuration.8

For negativeKeff andK2,21/2Keff ~Fig. 1!, the vertical
magnetization vanishes revealing a complete in-plane orien-
tation of the magnetic moments. Minimization of the mag-
netostatic energy causes vortex structures to form as the
magnetic anisotropy in-plane is zero. WithK250 the three-
dimensional twisted configuration transforms continuously
into the planar vortex structure betweenKeff50 andKeff5

20.2ED . A continuous reorientation transition occurs from
an out-of-plane magnetization to a vortex structure via the
origin of the anisotropy space.

In the region betweenKeff50 andK2521/2Keff ~Fig. 1!

the negativeKeff competes with the positiveK2 . The energy
minimization causes the canted phase to appear.11–13 The
canting angle depends on the balance betweenKeff andK2 .
As we do not have any anisotropy in the film plane, the
moments are canted with respect to the normal but are free to
have any orientation in the film plane. On the other hand, the
demagnetizing energy in finite-size samples supports the
charge-free vortex structure. Due to the cooperation of these
energies, a canted vortex structure forms~Fig. 2!. The canted
vortices transform continuously into their planar counterparts
with decreasingK2 and Keff . A reorientation transition
through continuous canting of the magnetization occurs.

In conclusion, an influence of the second-order perpen-
dicular anisotropy on the spin reorientation transition is
found whenKeff vanishes. The broadening of domain walls,

found forK2506,8 is eliminated by positiveK2 . The domain
wall width and energy are determined byK2 . ForK2.0, the
transition via a canted vortex-like structure is found which
yields the smooth, continuous connection between the verti-
cal domain structure and the vortex structure with in-plane
magnetization. The investigation of the magnetic microstruc-
ture for negativeK2 is under progress.
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FIG. 2. Canted spin structure forKeff520.4ED , K250.75ED, andkBT/J
50.05. Perspective view of an enlarged part of the sample. For clarity, only
one row out of two and one moment out of two in the row are drawn as
cones.
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Abstract
Very recent exact summation has indicated that the lateral confinement of
ultrathin ferromagnetic islands brings about significant deviations from the
usually assumed laterally infinite sample so far as the dipolar magnetic
anisotropy is concerned. Here, it is demonstrated that the phenomenological
rescaling of the structural detail leads to a fundamental micromagnetic
(continuum theory) quantity, namely, the demagnetizing energy for the
assumed shape of the mesoscopic island. The derivation of a compact
analytical formula for the demagnetization factor of any right circular
cylinder has been instrumental for this insight. The effects of discrete
geometry (lattice and substrate orientation), thickness, and overall shape of
the ultrathin structure are thus distilled into a form which exhibits a great
deal of universality.

1. Introduction

The analysis of ferromagnetism in geometrically confined

samples poses a number of fundamental questions, even

if only ideal lattice arrangements and saturated magnetic

configurations are considered. In many continuous theories

of the solid state there is the concept, or anticipation, of some

sort of dimensional crossover in such a way that the continuum

theory goes through as one or more of the dimensions

of the system under consideration become microscopic.

In micromagnetism, though, dimensional crossover has not

been analysed as an option beyond the formal taking of a limit

for the demagnetization factors of ellipsoids; this limit in fact

implies that the continuum approximation remains a valid one

in the process.

Regular arrays of nanosized ferromagnetic particles have

been examined more and more intensively from different

aspects over the last few years (cf [1, 2] and references

therein). Conditions are studied under which the particles are

magnetically coupled either by dipolar interactions or by the

itinerant electrons of the substrate. In fact, for the usually

envisaged applications one needs to ensure that the individual

islands would be well decoupled. Thus, the behaviour of a

single island becomes of paramount importance. Needless

to say, the simplest geometries for the individual islands

are best reproducible and, hence, hold the best promise of

reproducibility of structural and magnetic properties. Along

these lines, one recognizes pretty soon that the magnetic

object to be analysed is laterally mesoscopic, while vertically

microscopic, when thicknesses of only a few monolayers are

involved.

Naturally, two regular shapes come into question when

the ultrathin regime is investigated, those of very flat right

circular cylinders and of very flat right prisms. So far it has

been invariably assumed that the samples can be considered

as laterally infinite with microscopic vertical confinement.

The breakdown of the validity of a naive continuum

approximation has been actually shown by addressing the

dipolar magnetic anisotropy energy (MAE) by taking into

account the discreteness of the lattice [3–6]. This work held up

0022-3727/03/232945+05$30.00 © 2003 IOP Publishing Ltd Printed in the UK 2945



117

Y T Millev et al

some fundamental principles of Maxwell’s theory as applied

to ferromagnetic bodies [7] and adapted them to account for

the non-negligibility of discreteness as a result of the vertical

confinement only. Deviations from the three-dimensional

continuum approach were found and studied for different

numbers of monolayers and for different lattice symmetries.

In view of the size of the islands that are typical in nanoarrays, it

appears, though, that no due account has been attempted for the

finite lateral dimensions. Reference [3] is an exception. There,

the dipolar MAE of a small ball has been studied. The results

seemed to record the absence of any recognizable systematic

behaviour, exhibiting a lot of sensitivity to the local-site detail.

2. Discrete mesoscopic structures

In a very recent study [8], saturated cylindrical islands of

discrete dipoles were analysed. Their dipole MAE density was

found as the energy density difference between the vertical

and the in-plane saturated alignment of magnetic dipoles.

Diameter-to-thickness ratios κ = d/t , ranging from 40 to

1000, with the thickness ranging from 1 to 6 monolayers as well

as different crystal arrangements were considered. The limit

of infinite lateral dimensions was studied and the results of

previous studies [4–6] have been retrieved. A non-trivial step

was to take the rather individual curves, corresponding to the

different thicknesses at ‘fixed’ structure, and to normalize them

against the value for the dipolar MAE of the laterally infinite

sample. It was then established that all these individual curves

collapsed to a single, and thus universal, curve whose precise

appearance depended on the ratio κ of the cylindrical island

only. This universal curve for the rescaled dipolar MAE was

compared to the one for the dipolar MAE of an ellipsoid

of revolution with the same aspect ratio in the continuum

micromagnetic approximation (see, e.g. [9]).

In this paper, we identify precisely the universal curve,

depending on κ = d/t alone, as the dipolar MAE density for a

ferromagnetically saturated right circular cylinder of geometric

ratio κ . For the proper understanding of the advance, let us

briefly summarize the salient features of [8] from the presently

proposed perspective.

Let µ denote the magnitude of the individual microscopic

magnetic moment and let µ0 denote the magnetic permeability

of the vacuum. One has to define the saturation magnetization

as the density of magnetic moment MS = µ/Vdip, where Vdip

is the volume per site, i.e. per magnetic moment. This is the

definition used, e.g. by Draaisma and de Jonge [4]. The results

of [8] boil down to the demonstration of the validity of the

following relation for the dipolar MAE density:

�Edipolar(discrete) ≡ Edipolar(⊥) − Edipolar(‖)
≡ Eaxial(discrete) − Ediam(discrete)

= Ñ

(

d

t

)

X(t) = Ñ(κ)X(t). (1)

Here and below, we suppress the dimension-carrying factor

of 1
2
µ0M

2
S . That is, the dipolar MAE density is given in

natural units to avoid a repetitive occurrence of this factor.

The numerical factor X encapsulates the entire lattice-specific

contribution and additionally depends on the thickness. It

has been tabulated for the most important planes of epitaxial

growth and point-group symmetries [8]. At the same time,

Ñ has been empirically seen to depend only on κ after the

normalization (rescaling) described above: Ñ = Ñ(κ). This

universality was seen numerically at some 14 distinct points

for different values of κ .

3. Magnetic continuum: the core contribution

One of the main points of this paper is to demonstrate that

the empirical point-wise dependence Ñ(κ) is in fact derivable

from exact results for the continuum demagnetizing tensor

of a ferromagnetic cylinder with the same aperture as the

mesoscopic platelet. Hence, the factor Ñ(κ) encompasses

that part of the dipolar MAE density which is attributed

to the cylindrical shape of the specimen, regardless of the

fact that the platelet is by no means a continuous ferromagnet.

This observation provides, in our opinion, the identification

of universal features as far as they can possibly go in a

system which is so distinctly discrete that it is not even

micromagnetic in the strict ‘continuum’ sense of the word. It

will also transpire from the following that the formulae for the

continuum ferromagnetic cylinder are new in themselves, since

they combine an early insight of Brown [7] with independent

developments [10,11], made in a non-micromagnetic context.

Brown has shown that, in continuum micromagnetics,

magnetically saturated cylindrical bodies like platelets

belong to the very few non-ellipsoidal cases where the

demagnetization N̂ tensor can be found exactly [7, 12]. Just

like an ellipsoid of revolution, the right circular cylinder

possesses axial symmetry about its geometrical symmetry axis.

Consequently, the in-plane eigenvalues of the tensor N̂ are

equal. Thus, Naxial + 2Ndiam = 1. Trivially, Ndiam = (1 −
Naxial)/2 and, hence, for the difference of the two eigenvalues

that will be needed below one gets in analogy with the case of

an ellipsoid of revolution:

Naxial − Ndiam = 3Naxial − 1

2
. (2)

In the thin-film context, one would usually denote the

axial and diametral eigenvalues as vertical (⊥) and in-plane

(‖), respectively, but there is always a certain amount of

ambiguity, related also to the implied directions of the saturated

magnetization. We want to avoid this ambiguity by appealing

directly to the geometrical aspect of the platelets. Thus, we

need to find Naxial and this is affected in two steps.

First, there is the relation [12] between Naxial and the

self-inductance L of a finite single-layer circular solenoid

(‘current-sheet’ circular coil) Naxial = 1 − Y/(κπ2) with κ

defined as above and Y = L/(N2d). In the last formula,

N is the total number of turns in the coil; this should not be

mistaken with the demagnetization factor or its eigenvalues as,

in fact, the number of turns does not appear explicitly further

in the paper. The existence of such a relation is suggested,

generally, by the fact that both the demagnetization factor and

the self-inductance coefficient derive from the self-energy of

the two magnetization configurations, while, in particular, the

geometries of the two distinct physical settings are identical

and are finite right circular cylinders. The usefulness of the

relation was seen by Brown in that available tables could be

used for the quantity Y . A relatively large table of values can be

conveniently found in [13], while Brown only provides a few
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values for the case of the flat cylinder (cf [7] and the appendix

in [12]).

Second, the self-inductance L of a single-layer circular

coil has been long known in terms of a closed-form analytical

expression, involving the complete elliptic integrals (see

[13,14] and the references cited therein). The elliptic-integral

formulation, however, has several shortcomings which, being

of more mathematical nature, will be discussed elsewhere.

That is why we have found it advantageous to evoke an early

result for the required inductance L by Butterworth [10] whose

work has more recently been taken up as a starting point

for astonishingly simple high-accuracy approximations [11]

(see the appendix).

After some straightforward manipulations, one gets the

following result:

Naxial = 1 +
4

3π
κ − 2F1(5/2, 1/2; 2; κ2/(1 + κ2))√

1 + κ2
. (3)

There is no need to tabulate this function, because the

hypergeometric Gauss function [15] 2F1(a, b; c; z) is built-in

into widely spread computer-algebra packages. In the context

of very flat cylinders, as is the case for the ultrathin-film

cylindrical platelets, large values of κ ≫ 1 are of interest.

Although the relevant inductance results have been available

for quite some time now, we believe that the formula provided

under equation (3) is the first time that the demagnetization

factors of the saturated zero-susceptibility [12, 16] cylinders

are reported in terms of the hypergeometric function. It notably

covers the whole range of possible values of κ (0 < κ < ∞);

in particular, one does not need to examine separately the thin

(long) as opposed to the flat (short) cylinder.

With the help of the formula found for Naxial(κ) above,

one can now proceed to find the dipolar MAE density for the

saturated continuous cylinder in units of 1
2
µ0M

2
S :

�Econtinuum
dipolar (κ) ≡ Econtinuum

axial (κ) − Econtinuum
diam (κ)

= Naxial(κ) − Ndiam(κ) = 3Naxial(κ) − 1

2
,

(4)

where the N factors are those for the continuum cylinder. From

equation (3), one easily finds that

�Econtinuum
dipolar (κ) ≡ S(κ) = 1 +

2

π
k − 3

2

1√
1 + κ2

×2F1

(

5

2
,

1

2
; 2; κ2

1 + κ2

)

. (5)

The label chosen for the function S(k) is to remind of

the fact that it depends solely on the shape of the cylinder.

We believe that this is the first time that the dipolar MAE

density for the saturated cylinder has been cast in terms of the

very flexible hypergeometric function of Gauss.

If the point κ = ∞ is to be examined more

closely, the simple transformation p = 1/κ produces

immediately the result for both the dipolar energy and the

axial demagnetization factor. The graphical representation of

equation (5) is given in figure 1 for k ≫ 1.

Let us now summarize what we have got. We have

obtained new closed-form analytic expressions for the demag-

netization factors Naxial(κ) and Ndiam(κ) = [1 − Naxial(κ)]/2

0.

k

250 500

5

1.0

Figure 1. The MAE density �Edipolar in units of 1
2
µ0M

2
S . This is just

the universal function S(k) = [3Naxial − 1]/2 with the newly found
Naxial. In the ultrathin film context, κ is a large number (κ ≫ 1).

for the right circular cylinder in the usual micromagnetic sense,

i.e. in the continuum limit of micromagnetism. From this, we

have obtained straightforwardly the continuum dipolar MAE

density. All these quantities depend solely on the shape of

the cylinder as specified by the geometric ratio κ = d/t .

The expressions are superior to the usually quoted formu-

lae in terms of the complete elliptic integrals. The latter

are not immediately applicable to flat cylinders, and it is

extremely flat cylinders that are of interest in the present con-

text. Additionally, we provide in the appendix a very sim-

ple approximation for the demagnetization factors, based on

inductance work by Lundin [11], which would allow their com-

putation to an extremely high degree of accuracy on a simple

calculator, bypassing altogether the implementation of either

sophisticated software or numerical tables.

Now, the results above are valid for all values of the

geometric ratio (aperture), i.e. for all shapes of the right

cylinder, and not only for platelets. On the other hand, one

has the result of [8], given in equation (1) and pertaining to

the dipolar MAE density of the realistic discrete model of the

platelet. While in both equations (1) and (5) for the discrete and

continuum case, respectively, the MAE densities are measured

in units of ( 1
2
µ0M

2
S), the discrete MAE density is additionally

modified (scaled) by the lattice- and thickness-specific factor

X, discussed at the beginning. The very important finding in

this paper is that

�Edipolar(discrete)

X
= �Edipolar(continuum) = S(κ) (6)

with Ñ(κ) from the numerical procedure of [8] being equal to

the rigorous S(κ) to within a very high accuracy.

In summary and with the original units restored, it has

been established that the following form holds for the discrete

mesoscopic system:

�Edipolar(discrete) = [X({lattice}, t)][S(κ)]

[

µ0M
2
S

2

]

. (7)

Thus, one can recognize immediately both the factorization of

the dependences and the quantitative aspects involved, since

X and S(κ) are now known.

4. Discussion

Altogether, we believe to have shown and discussed in

sufficient detail that the exact finite summation of the dipolar
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sums for an essentially discrete dipole lattice, encountered

in experimental situations in ultrathin ferromagnetic platelets,

leads to a clear delineation of the validity of the micromagnetic

continuum ansatz and the quantitative way in which the

discreteness of the lattice bears on the final result for the

MAE density. It should be obvious that the micromagnetic

approach is alive and well in this limit of mesoscopic lateral

dimensions and microscopic vertical dimensions. In particular,

there is no place for ambiguous interpretation of experimental

or theoretical findings in such ultrathin, laterally finite systems.

Moreover, calculations of the type of those presented for

laterally infinite films [4–6] find additional justification as

they are reproduced by the present approach in the infinite

lateral limit. Alternatively and not less importantly, the same

‘factored’ interpretation might well be used as a quantification

of the extent of validity of the continuous approach. This

should not be surprising as micromagnetism is nothing else but

an advanced application of Maxwell’s theory of continua. No

matter from what side (discrete or continuum) one approaches

the problem, one should be able to recognize the above results

as an extremely useful starting point for further investigation

into the electrodynamics of small systems.

As an important step-stone, we have derived a rather useful

and compact formula for the demagnetization factors and

the dipolar MAE density for a saturated (zero-susceptibility)

continuum ferromagnet, possessing the shape of a right circular

cylinder of any geometric ratio κ = d/t . Amazingly simple

analytical approximations to the hypergeometric result are also

provided in the appendix.

We would like to point out that non-saturated cylindrical

ferromagnets have also been intensively considered. These are

outside the scope of this study. A most recent and authoritative

entrance to this subject is provided by [16] (see also [13] for

an earlier discussion).
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Appendix

To make this paper self-contained, we proceed to reproduce

some important results, most of which are not well known or

easily accessible.

In the first place, let us give some more detail from the

work of Lundin [11]. An important older reference for work

on self-inductance of finite coils is the book of Grover [14]

(see also the papers cited in [13]). Below, we shall stick to

the notations of Lundin, although in the bulk of the paper we

have made the necessary adjustments of notation. Thus, only

in the following, a stands for the radius of the finite circular

coil whose self-inductance is evaluated, b stands for the axial

length of the coil, N is the number of turns. The inductance

L is then suitably represented in two equivalent scaled forms

with the help of either of the functions f (x) or g(1/x):

L = µ0πN2a2

b
f

(

2a

b

)

= µ0N
2ag

(

2b

a

)

. (A1)

The scaling function f (x) is given by f (x) = f1(x
2) −

4x/(3π), while f1(y) is f1(y) = 2F1(
5
2
, 1

2
; 2; y/(1 + y))/√

1 + y.

The function g(x) has a somewhat more complicated

appearance and, in fact, contains an infinite series; moreover,

the latter series involves a two-position recursion relation for

the evaluation of the successive terms.

Two approximate formulae, given by Lundin, may turn

out to be useful, especially since they allow the calculations

to be carried out with the help of a pocket calculator, if the

conditions of their validity are met. Thus, a maximum relative

error less than 0.3 × 10−5 is claimed to be guaranteed by

the following approximate formulae, covering two different

ranges. For 2a � b, one has

L = µ0πN2a2

b

[

F1

(

4a2

b2

)

− 4

3π

2a

b

]

, (A2)

while for 2a > b, one gets

L = µ0N
2a

[

ln

(

8a

b
− 1

2

)

F1

(

b2

4a2

)

+ F2

(

b2

4a2

)]

, (A3)

where for 0 � x � 1 the approximating functions F1 and F2

are given by

F1(x) = 1 + 0.383 901x + 0.017 108x2

1 + 0.258 952x
, (A4)

F2(x) = 0.093 842x + 0.002 029x2 − 0.000 801x3. (A5)

To obtain the results for the axial demagnetizing factor of

the ferromagnetically saturated cylinder as displayed in the

bulk of the paper, one needs to follow the prescription of

Brown.

For the sake of completeness, here follow the results of

Stoner [17] and Osborn [18] for the oblate ellipsoid; Nz is the

demagnetizing factor along the shortest axis of the ellipsoid;

the aspect ratio K = a/c with a = b > c being the three

semi-major axes:

Noblate
z (K) = K2

K2 − 1

[

1 − arcsin(
√

K2 − 1/K)√
K2 − 1

]

. (A6)

Here, for the very flat oblate ellipsoid as in the platelets

considered, there is the simple approximate formula Nz =
1 − π/(2K) + 2/K2(K ≫ 1).

A comparison between the factors for the oblate ellipsoid

and the cylinder can be seen in figure 2. For very flat platelets

the difference is significant, which is why one should use the

now available analytical formulae for the cylinder. Note that

this does not imply that the concept of the equivalent ellipsoid

is wrong [7, 19]; rather, it implies that for the right circular

cylindrical shape it is no longer needed as the exact result has

been found in a closed analytical form. Very recently, the

equivalent ellipsoid for a disc has actually been exhaustively

determined by making use of the new hypergeometric result

for the disc’s demagnetization factor [20].
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N

oblate

zN

axialN

1006020

K, k

0.5

1.0

Figure 2. The upper curve is the universal curve for Noblate
z (K)

where K is the aspect ratio: K = a/c (a = b � c are the
semi-major axes of the ellipsoid). For comparison, we present also
Naxial(κ) for the cylinder, where κ is the diameter-to-thickness
ratio.

Finally, we have compared the results we get by the

hypergeometric formula with those published in the appendix 3

of [11] and those in table I of [12]. In the first case, the accuracy

of Brown’s table is better for the long cylinder as compared to

the short cylinder (in this latter case, for the four values of κ that

are only available there, the accuracy is better than 3.5×10−5).

In the second case, all of the digits given in table I there are

exact and significant.
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Abstract

We derive the optimal magnetic structures for monolayers of either square or triangular lattice symmetry with evidence for

morphological differences. The interplay between short-range exchange and long-range dipolar forces leads to quite different results

for Ising spins and vector spins. For the Ising model, spin domains with parallel stripes, chevron patterns and labyrinths at different

scales and with thermal disorder are deduced. For the vector model with a weak perpendicular anisotropy, the spins are planar and

form a lattice of vortices of both signs. Such a structure remains stable even under a large perpendicular magnetic field, whereas a

weak in-plane magnetic field is sufficient to obtain a uniform magnetic domain. For a sufficiently large perpendicular anisotropy, a

mixed structure appears that includes spin vortex areas surrounding spin-up and spin-down areas. © 1998 Elsevier Science B.V. All

rights reserved.

Keywords: Ising spins; Magnetic monolayers; Monte-Carlo simulations; Vector spins

1. Introduction pose of giant magnetoresistance applications [6 ]

brought a renewed interest in the magnetism of
It has been known for a long time both experi- thin films, with evidence for new structures

mentally and theoretically that magnetism in thin observed with spin-polarized low-energy electron
films with a strong perpendicular magnetic anisot- microscopy [7]. This interest is still increasing since
ropy is associated with a very rich variety of accurate methods of Foucault imaging of these
magnetic domain structures with stripes, chevrons, domains [8–10] and magnetic force microscopy
labyrinths and even bubbles [1–4]. The recent experiments [11] have now become available and
experimental preparation of epitaxial magnetic bring more and more results on spin orientations
monolayers [5] as well as the development of at an almost atomic scale. Recent results suggest
magnetic–non-magnetic multilayers for the pur- that spin reorientations, in the plane or perpendic-

ular to it, occur within a quite small range of

temperatures or of layer thicknesses [5].* Corresponding author. Fax: (+33) 1 43 54 28 78;

e-mail: ghazali@gps.jussieu.fr Using rather large samples for Monte-Carlo

0039-6028/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved.

PII: S0039-6028 ( 97 ) 01067-4
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simulations, the present study is devoted to a have been used. The Hamiltonian includes local

ferromagnetic exchange, long range dipolar inter-comparison of magnetic structures of monolayers
actions, uniaxial anisotropy and external field.of Ising spins and vector spins, as well as to the

comparison of spin morphologies due to the sym-

metry of the supporting lattice, together with the

influence of external fields. Previous theoretical 2. Ising spins

studies dealt with magnetic structures without any

external field [12–16 ] using smaller samples. The With a monolayer lattice in the xy-plane of Ising

spins S
i
=±1 in the z-direction, the totalMonte-Carlo (MC) method with the Metropolis

Hamiltonian readsalgorithm is a good tool for dealing with ground-

state and finite temperature spin structures of
H=−∑

�ij�

JS
i
.S
j
+D ∑

ij

(S
i
.S
j
/r3
ij

)−∑
i

H
z
.S
i

(1)
realistic models, especially in the case of frustration

that occurs here at different levels because of long-
where J is the nearest neighbour ferromagnetic

range competing dipolar interactions.
exchange parameter. D is the dipolar coupling

Thus, the present work involves deriving stable
parameter. The first sum is restricted to the nearest

structures at different temperatures by means of
neighbours, whereas the second is running over all

MC relaxations starting from a high-temperature couples of spins i and j with distance r
ij
. The

random spin configuration. At a given temper- external field H
z

is perpendicular to the plane. This
ature, several hundred MC steps per spin are is useful to introduce the dimensionless parameter
achieved. The convergence of the relaxation pro- K=D/(Ja3) where a is the lattice parameter. Thus,
cess towards equilibrium is observed and followed it is possible to consider the cases with different
by computing the total energy at each MC step. ratios D/J as issued from the single case with a
Several successive temperature steps are introduced given K value but with different scaling parameters
in order to lower the temperature rather continu- a. With these remarks in hand, the increase of the
ously. At the end of the cooling down process, the dipolar coupling D with a constant exchange must
total energy is just fluctuating around its mean be considered as an increase in the effective lattice
equilibrium value. Our samples are square and parameter a. Thus, large values of D must be
triangular lattices with a size ranging from 10 000 considered as being realized for large samples, and
to 40 000 spins with free boundary conditions. structural results become universal, but with size-
Since the final spin configurations may depend on dependent effects. Fig. 1 shows the low-temper-

ature MC relaxed structures of portions ofthe sample shape, disks, squares and rectangles

Fig. 1. Portions of 100×100 Ising spins at low temperature on square (right) and triangular ( left) lattices. Black stripes, up spins;

white stripes, down spins. D/J=0.75 (right), D/J=1 ( left); kT/J=0.1.
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100×100 spin samples, for square and triangular 3. Vector spins

lattices, without an external field. A comparison

between the two spin configurations gives evidence With a monolayer lattice in the xy-plane of

vector spins S
i
, the total Hamiltonian readsof an effective in-plane anisotropy linked with the

underlying discrete lattice. At a local size, with a

and thus D being small, an organization with
H=−∑

�ij�

JS
i
.S
j
+D∑

ij
A

S
i
.S
j

r3
ij

−3
(S
i
.r
ij
) (S
j
.r
ij
)

r5
ij
Bparallel stripes of alternate spins occurs, whereas

at larger sizes, with a and thus D being larger,
−A ∑

i

S2
iz
−∑
i

H.S
i

(2)stripes become organized with chevrons and later

labyrinthine patterns, as already observed in mate-

rials with uniaxial anisotropy [1–4,17]. The univer- where J is the exchange parameter, which is non-
sal character of these patterns at different scales is zero only for the nearest neighbour pairs. D is the
confirmed by these general observations. Fig. 2 dipolar coupling parameter, and the relevant sum
gives the temperature effect at a very large scale is running over all spin pairs i and j defining the
(200×200), in the case of a pure dipolar inter- vector r

ij
. The parameter A measures the uniaxial

action: J=0. Note the complex labyrinthine struc- anisotropy along the z-axis, and the external field
ture at low temperature with zigzags, ramifications, H can be in any direction. The previous reasoning
loops and endpoints. As the temperature increases, about the universality of this system remains valid
the walls roughen and shorten. Fig. 3 summarizes here with the new dimensionless parameter A/J
the results obtained for structures with an external for the reduced anisotropy. Thus a long-range
field, with evidence of hysteresis and the appear- dipolar effect occurs when looking at a large scale,
ance of bubble domains. The progressive change i.e. for a large value of the lattice parameter a.
from stripes to bubbles is initiated by stripe indent- First, without an external field and without anisot-
ations that transform into closed bubbles when ropy, the results for the low-temperature structures
there are sufficient numbers of them. This process obtained for different values of the dipolar parame-
of nucleation of independent indentations has not ter D, i.e. at different scales, show that all spins lie
been observed experimentally and requires a large in the plane. This is in agreement with a known
amount of local energy, whereas the process of result from magnetostatics on the demagnetizing
bubble shrinkage and wall motion needs less field in thin plates. These structures exhibit many
energy as we have seen in the total energy analysis. vortices of both signs as seen in Figs. 4 and 4
This might explain why indentations have a short where regions of strong vorticity are also high-
lifetime and are difficult to observe, whereas wall lighted and indicate both the vortex cores and the
motions have a long lifetime and are easily walls between uniform domains. These walls con-
observed. nect vortices of the same sign, just like von Kármán

Fig. 2. Pure dipolar coupling: portion of 200×200 Ising spins on a triangular lattice with labyrinthine patterns of up (black) and

down (white) spin domains. From left to right: kT/D=0.05, 0.2 and 0.4.
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Fig. 3. Magnetic field effects: portion of 100×100 Ising spins on a triangular lattice. D/J=1, kT/J=0.05. Clockwise: H/J=0, 1, 2.5

(after saturation) and 1.

vortex streets in turbulent flows (see, for example,

Ref. [18]). The final structure with vortices,

domains and walls can be compared to the classical

cross-tie walls generally reported in thin films [19].

The application of a weak in-plane external field

is enough to erase all vortices in the sample leading

to a uniform domain up to boundary effects,

whereas a very high perpendicular field, about 30

times higher than the in-plane one, is required to

make the sample magnetically uniform. Finally,

for a sufficiently large perpendicular anisotropy, a

mixed structure appears that includes almost

planar spin vortex areas surrounding nearly per-

pendicular spin-up and spin-down areas with a

marked chirality. This is illustrated in Fig. 5. Let

us stress that the spin orientation transition

between quasi-planar spins and Ising-like spins
Fig. 4. Vector spins: portion of 10192 spins on a triangular

occurs in a narrow region of anisotropy values at
lattice. D/J=0.1, A=0, kT/J=0.01. Sample=disk. Arrows are

a sufficiently low temperature when thermal excit-spins. Thick black (grey) arrows highlight the (counter) clock-

wise vortex cores with the relevant walls between spin domains. ations are weak.
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Domain Wall Orientation in Magnetic Nanowires
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Scanning tunneling microscopy reveals that domain walls in ultrathin Fe nanowires are oriented
along a certain crystallographic direction, regardless of the orientation of the wires. Monte Carlo
simulations on a discrete lattice are in accordance with the experiment if the film relaxation is taken
into account. We demonstrate that the wall orientation is determined by the atomic lattice and the
resulting strength of an effective exchange interaction. The magnetic anisotropy and the magnetostatic
energy play a minor role for the wall orientation in that system.
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Magnetism of systems with reduced dimensions poses
a number of topical questions, one intriguing issue being
the orientation of domain walls. It has been shown ex-
perimentally that the mesoscopic pathway of domain
walls in ultrathin films can either be arbitrary, as in
Co=Au�111� [1], or follow certain crystallographic direc-
tions, as in Fe=W�110� [2]. Although the knowledge of
domain patterns and, in particular, the domain wall ori-
entation on the nanoscale is of great importance for the
fundamental physics of magnetism, as well as for tech-
nical applications, the orientation of domain walls on a
local, microscopic scale has not yet been studied.

One experimentally accessible and, for future applica-
tions, very perspective geometrical shape is a so-called
nanowire —a quasi-one-dimensional structure of infinite
length and lateral dimensions on the nanometer scale. The
nanowire geometry is particularly advantageous for the
investigation of the domain wall orientation as the latter
can be governed by a minimization of the total wall
length. On the other hand, it has been demonstrated that
in ultrathin nanostructures the discreteness of the crys-
talline lattice can also change the magnetization configu-
ration [3]. The role of the lattice for the domain wall
orientation has not been analyzed systematically.

For many experimental systems, e.g., Fe=Cu�100�, the
shortest wall path coincides with one of the crystallo-
graphic axes which makes it impossible to distinguish
between the role of the lattice for the domain formation
and other effects. Only if the shortest distance is different
from any principal axes of a lattice the mechanism under-
lying the orientation of the domain walls can be revealed.
A suitable and experimentally well-studied model system
is the double layer (DL) Fe nanowires on stepped W(110)
[2,4–8] being characterized by perpendicularly magne-
tized domains separated by domain walls. Experimental
and ab initio electronic structure calculations [9] led to a
comprehensive understanding of the electronic and the
magnetic properties. The relationship between the orien-
tation of domain walls and of the DL Fe stripes, however,
has not yet been investigated.

This study is devoted to the analysis of the influence of
the discrete nature of an atomic lattice on the orientation
of domain walls in nanostructures. Scanning tunneling
microscopy on areas with different local miscut orienta-
tions reveals that the domain walls are oriented along the
�1
110� and less often along the �3
331� direction, regardless
of the orientation of the nanowires. Employing Monte
Carlo simulations (MCS) we demonstrate that the wall
orientation is determined by the underlying crystalline
lattice and the exchange interactions. The magnetic an-
isotropy and the magnetostatic energy, which can align
walls along certain crystallographic directions in bulk
material, play a minor role for the wall orientation. We
regard these results to be valid for a large class of low
symmetry ultrathin ferromagnetic films.

The experiments have been performed in a commercial
variable temperature STM attached to a five-chamber
UHV system. The instrument is equipped with an x-y
sample positioning facility which allows one to access
different areas on the same sample. We used etched tung-
sten tips for the measurements. Fe was deposited onto the
W(110) substrate by molecular beam epitaxy at a pressure
p � 1� 10�10

mbar. To achieve step flow growth the
crystal was held at T � 500 K during thin film deposi-
tion. Simultaneously to constant current images, maps of
the differential conductance dI=dU were recorded by
means of the lock-in technique.

Figure 1 shows the topography (a) and maps of dif-
ferential conductance (b)–(d) of 1.7 ML (monolayer)
Fe=W�110�. While the dI=dU map of Fig. 1(b) has been
measured simultaneously with and at the same position as
the topographic image, the dI=dU maps of Figs. 1(c) and
1(d) show other areas of the same sample which exhibit
different local miscut orientations. In any case the Fe DL
nanowires can be distinguished from sample locations
which are covered by a single Fe layer (SL) due to their
different electronic properties resulting in a dI=dU signal
that is lower for the SL than for the DL. The DL nano-
wires shown in Figs. 1(a) and 1(b) extend approximately
along [001], the ones in Fig. 1(c) along �1
110�, while in
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Fig. 1(d) the wire direction is intermediate, roughly along

�1
111�. Because of unequal diffusion energies the Fe

stripes grow smoothest along [001] and least smooth

along �1
110� [10]. After initial pseudomorphic growth

the high tensile strain starts to relax by insertion of

dislocation lines in the Fe DL which run along the [001]

direction. These are imaged as narrow black lines in the

dI=dU maps. The double layer nanowire has a periodic

magnetic structure with out-of-plane domains alternat-

ingly magnetized up and down. These domains are sepa-

rated by 180
	 in-plane domain walls. The typical distance

between adjacent walls is 23
 2 nm [8]. Because of spin-

orbit coupling we can differentiate between areas with

out-of-plane and in-plane magnetization even with non-

magnetic tips [4]. Since the bias voltage chosen for the

measurements of Fig. 1 (U � 5 mV) is below the cross-

over of domain and domain wall spectra [see Fig. 1(e) in

Ref. [4] ] the domain walls are imaged as white lines in

this experiment. Regardless of the direction of the nano-

wires the domain walls run mainly along the �1
110� di-

rection, i.e., perpendicular to the dislocation lines. As a

consequence, the domain walls within the nanowires are

infinitely long in the case of Fig. 1(c)(disregarding inter-

ruptions due to structural imperfections), and very short

in case of Fig. 1(b) where they run perpendicular to the

axis of the nanowire. Less often the domain walls run

along �3
331�. This effect can be seen in Fig. 2(a) where a

DL, 20 nm wide nanowire is shown. As the bias voltage

and the material of the STM tip were different from those

of experiment Fig. 1 the domain walls are imaged as dark

lines [2]. Both �1
110� and �3
331� directions are not principal

directions of an ideal bcc lattice as they do not coincide

with the primitive vectors of the bcc structure.

We have performed calculations following a widely

used micromagnetic framework [11], where the nanowires

consist of rectangular blocks of continuous material. For

isotropic exchange stiffness A we obtain the wall direc-

tion that is determined by a minimization of the wall

length, i.e., perpendicular to the nanowire direction

[Fig. 2(b)]. This result is not consistent with the experi-

mental observation of Fig. 1. It even cannot be corrected

by an additional in-plane anisotropy [Fig. 2(b)]; this leads

only to an alignment of the magnetization within the wall

with no consequences for the wall direction.Varying A in

the �1
110� and in the �001� direction [12], we obtain a

tilting of the domain wall [13]. Hence, in contrast to bulk

materials where magnetic anisotropy may affect the wall

direction, the exchange stiffness plays a more important

role in the ultrathin limit. The anisotropy of the contin-

uum parameter A can be governed either by noncubic

symmetry of the lattice or by the varying exchange in-

tegral between nearest-neighboring atoms [12]. By fitting

A to the experimental results we cannot distinguish be-

tween the two effects. Besides, we cannot explain the

experimental observation of coexisting �1
110� and �3
331�
walls. Thus, without consideration of the discrete atomic

lattice the physics of the wall orientation in the ultrathin

limit cannot be understood.

FIG. 2 (color online). Top view of experimental (a) and simu-

lated nanowire sections of 20 nm (b)–(d) and 40 nm widths (e):

(a) experiment, domain walls are imaged as dark lines;

(b) continuum theory, isotropic exchange. MCS: (c) J3:J2:J1 �
0:1:1 (identical exchange interaction along all nearest neighbor

bonds); (d),(e) J3:J2:J1 � 4:2:1.

FIG. 1 (color online). (a) Topography and (b)–(d) dI=dU
maps of 1.7 ML Fe=W�110� at different local miscut orienta-

tion. (a) and (b) were recorded simultaneously. The lateral scale

is the same in all images. In all cases, domain walls (white

lines) are oriented along �1
110�, regardless of the orientation of

the nanowires. Parameters are U � 5 mV, I � 0:5 nA, T �
75 K (b),(c), and 120 K (d).
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In order to explain the experimental results we performed MCS on a discrete lattice. In contrast to the case of

localized spin systems, in itinerant-electron systems the exchange coupling between local moments does not explicitly

enter into a Heisenberg-type Hamiltonian. However, within the framework of spin-density-functional theory expres-

sions for the effective exchange pair interactions can be obtained [14,15]. With these effective constants the system

Hamiltonian for the MC calculations reads

H � �
X
hi;ji

JkSi 
 Sj �D
X
i;j

 
Si 
 Sj

r3ij
� 3

�Si 
 rij��Sj 
 rij�

r5ij

!
�k1

X
i

sin
2�� k2

X
i

sin
4�� kp

X
i

sin
2�cos2�’� ��;

where Jk denotes the effective nearest neighbor exchange

coupling constant along different bonds (Fig. 3), D is the

dipolar coupling parameter, � and ’ are the spherical

angles, and rij is the vector between sites i and j. The

coefficients k1 and k2 are the first- and second-order

anisotropies per atom, respectively. kp is an in-plane

anisotropy per atom. The in-plane anisotropy can have

any angle � with respect to the x axis. For the MC

computations we consider two layers of classical, three-

dimensional magnetic moments S on a bcc(110) lattice of

about 20 000 effective magnetic sites. The Monte Carlo

procedure is described elsewhere [16]. We use a realistic

ratio of exchange and dipolar constants D=J � 10
�3. The

anisotropy constants have been widely varied in the re-

gime of the vertical magnetization. The best agreement

with the experimental results (domain width of 20–25 nm

and wall width of 6–9 nm) gives constants corresponding

to an anisotropy energy density K1 � �1:6–2:0�Kd, K2 �
�0–0:7�Kd, Kp � �0–0:6�Kd with Kd � 2�M2

s the shape

anisotropy. The value of the out-of-plane anisotropy is

K1 � �2–2:1�Kd. We have performed calculations for

films, single wires, and arrays of three wires with peri-

odic boundary conditions along the wires and open

boundary conditions in the perpendicular direction.

In a first step we assume an idealized film with an

‘‘isotropic’’ nearest neighbor exchange, i.e., J1 � J2 and

J3 � 0 in the case of a bcc(110) lattice (cf. Fig. 3). In

infinite sc(100) or an fcc(111) 1–2 ML films no preferred

wall orientation is observed. In contrast, domain walls in

a 2 ML bcc(110) film have mainly �1
110� orientation. This

can be explained by the minimization of the density of

nearest neighbor bonds per unit volume of a wall for this

direction. As a consequence, the exchange energy cost

due to the wall formation can be minimized. The same

results have been obtained for wide wires (>40 nm).

Those results are consistent with experiments and

demonstrate that the crystal lattice can affect the wall

orientation.

A typical result for the case of �1
11 
11� oriented, 20 nm

wide nanowires is given in Fig. 2(c). In that case the walls

deviate from the �1
110� direction. The orientation of walls

is close to �1
111�. Hence, the lattice symmetry alone is

insufficient to orient the domain walls along �1
110�. The

calculations show that if the length of the walls can be

minimized as, for example, in thin wires of Fig. 2(c) the

wall orientation can deviate from �1
110�. In the following

we explain the discrepancy by taking into account the

lattice relaxation.

Because of pseudomorphic growth the first two Fe

layers adopt the lateral lattice constant of tungsten, which

is about 10% larger than that of bulk iron. As a conse-

quence, the Fe-Fe interlayer distance relaxes below the Fe

bulk value [9]. This leads to a change of the interatomic

distances. Namely, the neighbor distance in the [001]

direction (black in Fig. 3) d1 decreases, the spacings in

the �1
111� and the �1
11 
11� direction d2 (light grey) are

increased, and the distance in the �1
110� d3 direction

(dark grey) decreases to a value close to the nearest

neighbor distance in bulk iron. Hence, instead of six

nearest neighbors as in an ideal, 2 ML thick bcc(110)

film, in Fe=W�110� all atoms have eighth bonds of similar

length. The respective distances in units of the nearest

neighbor distance in bulk Fe are d1 � 0:82, d2 � 0:96,

and d3 � 0:99 [9].

The calculations [14,17–19] show that the strength of

the exchange coupling is a function of relative position rij

of the magnetic moments i and j. Especially interesting is

the behavior of J�rij� in Fe. For Fe a reduction in nearest

neighbor (NN) spacing dNN with respect to the bulk value

drives the exchange towards antiferromagnetism. This

effect has been made responsible for the fact that fcc-Fe

is antiferromagnetic while bcc-Fe is a ferromagnetic

material [20,21]. That argument is also supported by the

position of Fe on the Bethe-Slater curve, which is widely

used in the physics of ferromagnetic alloys [21,22]. Thus,

a decrease of the interatomic distance in the [001] direc-

tion can lead — in contrast to other ferromagnets — to a

reduction of the ferromagnetic exchange parameter.

FIG. 3 (color online). Unit cell of 2 ML Fe=W�110� in (a) top

and (b) perspective views. Black and light grey (blue) lines

denote the nearest neighboring bonds J1 and J2 in an undis-

torted, ideal crystal. Dark grey (red) lines denote additional

nearest neighboring bonds J3 due to relaxation.
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For Fe nanowires on W(110) the situation is even more

subtle due to hybridization and polarization effects at the

Fe=W interface. All the more interesting is the advance,

described in very recent studies [23,24], where the ex-

change stiffness of Fe films adsorbed on a W(110) surface

has been calculated. The authors find that the exchange

stiffness A, which is equal to 2JS2=a for a bcc lattice [25],

depends on the direction along which the spin wave is

excited. For one monolayer Fe=W�110� the exchange

stiffness in the �1
110� direction is 4 times larger than in

the [001] direction [24]. For a 2 ML film the difference is

found to be smaller, but the tendency remains the same.

The physical reason for this anisotropic behavior can lie

in changes of interatomic spacing, as discussed above, or

in additional indirect spin interactions through the W

substrate [24]. In any case, the dependence of the ex-

change interaction on rij must be taken into account in the

simulation of the magnetic ordering.

According to this argument we introduce three differ-

ent exchange constants Ji for the three nonequivalent

pairs of neighboring magnetic moments. Hamiltonians

of that type are widely used in models of frustrated

magnetic systems [26]. We have explored different ratios

of J3:J2:J1 (dark grey, light grey, and black bonds in Fig. 3,

respectively). Generally, the walls tend to be aligned

along the axis of the strongest exchange coupling. The

best overall accordance with the experiment is found for

ratio J3:J2:J1 � 4:2:1, which is in good agreement with

Refs. [23,24] and the Bethe-Slater curve. For [1
111]

nanowires [Fig. 2(d)] the majority of the walls follow

the [1
110] axis. However, [3
331] walls are also found. For

�1
110� nanowires of 40 nm width [Fig. 2(e)] we also get

�1
110� oriented domain walls which cannot be expected

from isotropic exchange interactions. The walls are not

perfectly straight but show some irregularities. For ex-

ample, the wall is forced out of the �1
110� direction at the

rim of the nanowire. A similar behavior has also been

found experimentally [see the circle in Fig. 1(c)]. We have

also explored different orientations and strengths of the

in-plane anisotropy Kp. As already mentioned above the

only effect of a strong Kp is an alignment of the magnetic

moments in the wall along the respective axis. The ori-

entation of domain walls is not influenced by Kp showing

that the mechanism of wall orientation described here is

distinct from the one observed in bulk material, which is

governed by magnetic anisotropy and dipolar energy.

In conclusion, we have demonstrated by means of an

experimental study and extended Monte Carlo simula-

tions that in contradiction to the isotropic continuum

approximation the orientation of magnetic domain walls

in ultrathin films is governed by the atomic lattice struc-

ture and the set of nearest neighbor moments. The mag-

netic anisotropy and the magnetostatic energy, which can

govern wall orientations in bulk material, play a minor

role in the ultrathin limit.
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The search for uncompensated magnetic moments on

antiferromagnetic surfaces is of great technological

importance as they are responsible for the exchange-bias

effect that is widely used in state-of-the-art magnetic

storage devices. We have studied the atomic spin structure

of phase domain walls in the antiferromagnetic Fe

monolayer on W(001) by means of spin-polarized scanning

tunnelling microscopy and Monte Carlo simulations. The

domain wall width only amounts to 6–8 atomic rows.

Although walls oriented along 〈100〉 directions are found to

be fully compensated, detailed analysis of 〈110〉-oriented

walls reveals an uncompensated perpendicular magnetic

moment. Our result represents a major advance in

the field of antiferromagnetism, and may lead to a

better understanding of the magnetic interaction between

ferromagnetic and antiferromagnetic materials.

A
ntiferromagnetic surfaces play an important role in
today’s information technology as they are used to pin
the magnetization direction of intrinsically bistable thin

ferromagnetic films by the exchange-bias (EB) effect. This effect,
discovered about 50 years ago1,2, is based on the direct exchange
interaction between an antiferromagnet and a ferromagnet it is
in contact with, leading to a sign-dependent magnetic coercivity
of the ferromagnet. Although the underlying physics of the EB
effect was already correctly described in the original publication2,
the rather small size of the effect could only be explained recently.
Namely, it was found that the vast majority of the antiferromagnet’s
surface spins are inactive, and only a few uncompensated spins
contribute to the effect3,4. Up to now, spin–flop coupling5,6,
grain size7,8, domains due to interface roughness9 and non-
magnetic defect sites10,11 have been discussed as possible sources
of uncompensated spins.

Owing to their essentially vanishing net magnetization, the
experimental imaging of antiferromagnetic domains is particularly
difficult. Only recently, domains12–14 and domain walls15 (DWs)
have been observed by photoelectron emission microscopy with
linearly polarized X-rays. The contrast mechanism of this technique
relies on X-ray magnetic linear dichroism, which depends on
the angle between the electrical field vector �E and the sample’s local
magnetic axis �A. Consequently, it is only sensitive to orientational
changes as schematically represented in the top panel of Fig. 1a.
So-called phase domains (bottom panel of Fig. 1a), where the
antiferromagnetic spin structure shifts laterally by one structural
lattice constant can only be detected indirectly by the presence
of DWs14. However, owing to spatial-resolution limitations,
X-ray magnetic linear dichroism–photoelectron emission
microscopy cannot detect details of the spin structure of DWs
on the atomic scale. For this purpose, spin-polarized scanning
tunnelling microscopy (SP-STM) is an ideal tool because
its capability for atomic resolution has been demonstrated
on ferromagnetic16 and antiferromagnetic surfaces17–19. STM
with non-magnetic tips is only sensitive to the spin-averaged
local density of states n(r, EF) at the Fermi level (low-voltage
approximation) and tip position r. The intrinsic spin-polarization
of magnetic tips, PT ≡ (n↑ − n↓)/(n↑ + n↓), where n↑ and n↓ are

nature materials ADVANCE ONLINE PUBLICATION www.nature.com/naturematerials 1
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Figure 1 Schematic representation and experimental observation of DWs at

antiferromagnetic surfaces. a, Scheme of an orientational domain wall (o-DW) and

a phase domain wall (p-DW). b, SP-STM image of 1.1 AL Fe/W(001) measured with

an Fe-coated probe tip at µ0H= 2 T. The antiferromagnetic structure, which is

shown at higher resolution in the inset, exhibits long-range periodicity without any

DW visible in the field of view. Only at higher defect density do p-DWs appear, which

can be imaged with c, out-of-plane (µ0H= 2 T) and d, in-plane sensitive tips (no

field). In the constriction between the two double-layer islands a p-DW, which runs

along the [010] direction, can be seen. At the position of the p-DW, the magnetic

structure shifts by one atomic site, that is, half the magnetic periodicity (see

dashed lines).

the majority and minority density of states, introduces a spin-
polarized contribution to the tunnelling current I(r), which scales
with the projection of the unit vector of tip magnetization uT onto
the local magnetization density of states at EF, m(r,EF) (ref. 20):

I(r) ∝ n(r,EF)+PTuT ·m(r,EF). (1)

This leads to a magnetic contribution to constant-current mode
images of periodic magnetic structures, which is superimposed on
the conventional topographic image18,19. Here we demonstrate—
on the model system of an antiferromagnetic Fe monolayer on
W(001)18—that SP-STM can also be applied to non-periodic and

non-collinear spin structures on the atomic scale. Our experimental
results reveal that the phase DWs (p-DWs) in this model system
are only 6–8 atomic rows wide, and that the wall centre is
located between atomic rows. Together with Monte Carlo (MC)
simulations we can infer the existence of uncompensated spins in
p-DWs that are oriented along 〈110〉 crystallographic directions.
Depending on the surface density of these p-DWs the resulting
moment may lead to a significant contribution to EB.

The samples consist of iron films (nominal thickness of 1.1–
1.4 pseudomorphic atomic layers (AL)) deposited onto a stepped
W(001) single crystal held at slightly elevated temperature (T =
400 ± 50 K). Figure 1b shows a constant-current image of 1.1 AL
Fe/W(001) measured with an Fe-coated tip at µ0H =2 T. This field
leaves the sample’s antiferromagnetic structure unchanged as it is
determined by the much stronger exchange coupling18. Although
the topography seems flat if measured with a non-magnetic tip
(not shown here), the use of an out-of-plane sensitive magnetic tip
leads to the c(2×2) superstructure visible in Fig. 1b. The c(2×2)
superstructure is caused by the above-mentioned spin-polarized
contribution to the tunnelling current (equation (1)): because the
spin has to be conserved during an elastic tunnelling process,
the current (at equal distance) is higher (lower) if the magnetic
moments of the tip and sample are parallel (antiparallel)20,21. In
the constant-current mode, the feedback loop keeps I(r) at a
set-point value Iset, resulting in a magnetic-induced corrugation
that amounts to 4 pm in Fig. 1b. The experimental results prove
that the Fe monolayer on W(001) is indeed a perpendicular
antiferromagnet with the magnetic moments of nearest-neighbour
atoms pointing alternately up and down18 (see inset). Although
numerous defect sites, such as impurities and ad-atoms as well as
ferromagnetic second-layer islands are visible, perfect long-range
magnetic order without any DW is found on a scale of about
2 µm×1 µm (see the Supplementary Information).

Only if the defect density was increased, for example, by
increasing the Fe coverage to 1.3 AL, did we occasionally find
short (1–2 nm) segments of p-DWs as shown in Fig. 1c. This
particular DW is clamped between two double-layer islands, and
extends along the [010] direction. By following the dashed lines in
Fig. 1c along 〈110〉 directions, it becomes apparent that the phase
of the magnetic lattice shifts at the position of the wall by one
atomic site. Within the p-DW, which is only a few lattice sites
wide, the magnetic signal seems rather blurred because here—
regardless of whether the rotation takes place parallel (Bloch-like)
or perpendicular (Néel-like) to the wall—the magnetic moments
of the tip and sample are orthogonal. The in-plane c(2 × 2)
superstructure within the same p-DW can be observed after
releasing the external field (Fig. 1d), which makes the Fe tip
sensitive to the in-plane component.

The internal spin structure of DWs was investigated
theoretically by the MC method, which is capable of simulating
complex spin structures of antiferromagnets22. It is based
on the classical Heisenberg model, and includes long-range
dipolar interactions

H = J
ij
1

∑

〈i,j〉

S
i ·S

j + J
ij
2

∑

〈〈i,j〉〉

S
i ·S

j

+ D
∑

ij

(

Si·Sj

(r ij)3
−3

(Si·rij)(Sj·rij)

(r ij)5

)

−K1

∑

i

(Si
z)

2,

where Si is a three-dimensional unit vector-spin, which is separated
by the distance r ij . 〈i, j〉 and 〈〈i, j〉〉 denote nearest-neighbour and
next-nearest-neighbour pairs, respectively. All material parameters
of Fe/W(001) were obtained from density functional theory
calculations23. The nearest- and next-nearest-neighbour exchange
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Figure 2 MC simulation of antiferromagnetic DWs. a, Rendered perspective

image of the quenched spin structure of an antiferromagnetic material as obtained

by MC simulation. A DW, which exhibits three different orientations: along the (i)

[110], (ii) [100], and (iii) an intermediate direction, can be seen. Calculated STM

images for b, out-of-plane and c, in-plane sensitive magnetic tips.

parameters are J
ij
1 = 20.3 meV and J

ij
2 = 2.4 meV, respectively,

and the anisotropy energy density is K1 = 2.4 meV per atom
(ref. 18). The magnetic dipole–dipole interaction is calculated by
D = (µ0g2µ2

Fe)/(4πd3), with µ0 the permeability of the vacuum,
µFe = 2.67 µB the magnetic moment of antiferromagnetic iron
and d = 0.3165 nm the interatomic Fe–Fe distance18. To avoid
the sample eventually relaxing into a single-domain state it had
to be quenched rapidly from a random start configuration to the
measurement temperature, that is, T ≈ 13 K. A typical result is
shown in Fig. 2a. We find no preferred orientation of the DW but
three segments oriented approximately along (i) the 〈110〉, (ii) the
〈100〉, and (iii) an intermediate direction.

To compare the theoretical spin structures with experimental
STM data, we need to calculate SP-STM images of arbitrary non-
collinear magnetic structures without having access to the full
electronic structure of the sample. We extend the independent
orbital approximation24 to spin-polarized tunnelling by making the
additional assumption that the electronic structure at every surface
atom α is the same, except for a rotation of the local quantization
axis by an angle ϑα with respect to the tip’s magnetization direction
uT. Here, we assume an effective spin-polarization of the tunnel
junction PT · PS = 0.3, with PT,S being the spin-polarization of the
tip and the sample, respectively. We have checked that our model
correctly reproduces the change from a non-magnetic STM image
to an SP-STM image17–20 of periodic collinear and non-collinear
magnetic structures even at small effective spin-polarization.

The calculated STM images shown in Fig. 2b,c are in good
qualitative agreement with the experiment (see Fig. 1c,d): the
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Figure 3 Spin configuration of [010]- and [110]-oriented DWs. Schematic

representation of p-DWs that are centred between (top row) and on top of atomic

rows (middle row). (bottom row) Part of a p-DW oriented along the [010] (left) and

the [110] direction (right) from Monte Carlo simulations. The grey scale gives the

calculated out-of-plane component of the magnetization.

c(2 × 2) superstructure is clearly observed in the domains (DWs)
with an out-of-plane (in-plane) sensitive tip. As also found
experimentally, the apparent DW width is slightly larger for in-
plane than for out-of-plane sensitive tips. This can be explained
on the basis of equation (1): the magnetic corrugation at the DW
scales cosine-like for an out-of-plane sensitive tip but sine-like for
an in-plane sensitive tip, with the former having a rather steep
zero-crossing at the DW position. The very weak topographical
(non-magnetic) atomic contrast observed wherever uT ⊥m(r) (see,
for example, the domains in Fig. 2c) is below the experimental
resolution limit20,24.

To discuss whether p-DWs can cause uncompensated magnetic
moments, we have schematically illustrated four principal types
of p-DWs in Fig. 3. The p-DWs may be centred between (top
row of Fig. 3) or on top of atomic rows (middle row), and
either oriented along the [010] (left column of Fig. 3) or along
the [110] direction (right column), respectively. For the ease
of illustration, Fig. 3 shows a fully coplanar situation, but the
following arguments are also valid for a system such as Fe/W(001),
where the easy axis is perpendicular to the surface and to the
wall direction. The schematic diagram reveals that—irrespective
of their symmetry—〈010〉-oriented DWs are always compensated
because adjacent spins within any row parallel to the wall point
in opposite directions. The situation is different for p-DWs
along 〈110〉 directions as their magnetic moments do not cancel.
The direction of the uncompensated moment depends on the
position of the p-DW centre: if the p-DW centre is on top
of an atomic row it points along the spins that form the DW
centre, in the case of a wall that is centred between two atomic
rows it is along the quantization axis within the domains. The
bottom row of Fig. 3 shows the perpendicular component of
the magnetization as obtained from MC simulations for p-DWs,
which almost perfectly run along the [010] (left column) and the
[110] (right column) direction. In agreement with the arguments
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Figure 4 Detailed view of a 〈110〉-oriented p-DW. a, Theoretical spin structure, b, simulated, and c, experimental SP-STM image of a p-DW in the out-of-plane
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(lower panel) direction. Middle panel: sum (black) and difference (grey) of the line profiles shown in the upper panel. The wall is about 1.6-nm wide, and its out-of-plane

component exhibits mirror symmetry.

mentioned above, the [010]-oriented wall is compensated (average
total magnetization ≤ 10−4 µFe per nm DW length). Although
not perfectly mirror-symmetric, the DW centre of [110]-oriented
p-DWs is always found between two atomic rows and—in
agreement with the uncompensated moment in the simple
sketch—a finite perpendicular moment of about 0.6 µFe per nm
DW length remains. We can only speculate about the cause of
the deviation from perfect mirror-symmetry: possibly it is due to
thermal fluctuations or an incommensurable DW width.

Now we want to focus on a wall approximately directed along
the 〈110〉 direction. A closer view of the azimuthal orientation
of spins within the wall of Fig. 2a (middle of segment (i)) is
shown in Fig. 4a. As mentioned above, the MC simulations find
the DW centre between two atomic rows. For clarity the atomic
rows are numbered successively 1–5 with respect to their distance
from the DW centre in Fig. 4a. The wall centre is formed by
two rows 1 with a predominant in-plane orientation (Θ ≥ 65◦).
With increasing distance from the DW centre, the moments tilt
more and more into the out-of-plane direction; the in-plane
component of rows 4 and 5 is already very small. Apparently,
the wall is 6–8 atomic rows wide and Bloch-like. Comparing
equidistant atomic rows located on opposite sides of the DW centre
it becomes clear that the in-plane component is reversed, whereas
the out-of-plane component is equal. Thereby, the integrated
in-plane component of magnetization is perfectly cancelled but,
interestingly, a non-vanishing net magnetic moment remains for
the out-of-plane component.

Figure 4b and c shows a calculated and experimental SP-
STM image of such a wall, respectively. Although there are some
differences regarding details of the contrast within the DW, the
width and general appearance of the DW is well reproduced.
To gain a better understanding of the experimentally observed
structure we have plotted two experimental line sections taken
on adjacent atomic rows along the [110] direction, that is,
perpendicular to the wall (Fig. 4d (upper panel)). These two rows
are approximately equally distant from the termination points of
the DW. The middle panel shows the sum and the difference of
these lines in black and grey, respectively. The difference (grey)

shows an almost constant signal of opposite sign at the left and right
rim of the line section, that is, far away from the DW centre. These
regions (domains) are connected by a constant slope that extends
over approximately 1.6 nm, which corresponds to the wall width
of 6–8 atomic rows mentioned above. The sum (black) reveals that
the average out-of-plane component of these atomic rows is mirror-
symmetric. The mirror-symmetric appearance, which is also found
in the line profile taken along the [010] direction (lower panel of
Fig. 4d), indicates—in agreement with the above-mentioned MC
calculations—that the DW centre is located between two atomic
rows. This is also confirmed by an interpolation of the atomic
periodicity from the two domains into the DW (arrows in lower
panel of Fig. 4d). Possibly, the position of the DW centre moves
out of a mirror-symmetric position between two atomic rows when
approaching the termination points of the DW that are outside the
field of view of Fig. 4c. Although we did not study the behaviour
at the rim of the antiferromagnetic monolayer in detail, a similar
effect appears in our MC simulations, best visible at the bottom-
left edge of the spin disc in Fig. 2.

Owing to the fact that DWs in antiferromagnets cost exchange
energy but cannot lower the dipolar energy, they are very rare
and short on clean surfaces. However, we believe that they
may be much more frequent in a typical EB situation. Here,
the antiferromagnet is covered with a ferromagnetic film that
typically has a higher magnetic ordering temperature than the
antiferromagnet. Consequently, the antiferromagnet is in contact
with a ferromagnet when it orders magnetically. In this case, we
expect that the exchange coupling to the ferromagnet induces a
relevant number of p-DWs. Whether the resulting uncompensated
moment—in addition to moments that arise from known sources
as grain size4,7,8, step-edges9, and non-magnetic defect sites10,11—
significantly contributes to EB, is beyond the scope of our paper.

METHODS

The experiments were carried out in an ultrahigh-vacuum system (Omicron

Multiprobe MX) specially designed for magnetic imaging25. Within a cryostat

(on the basis of the model spectromag) from Oxford Instruments, it contains a
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home-built low-temperature (T = 13±1 K) scanning tunnelling microscope25,

which is equipped with a tip-exchange mechanism allowing the in vacuo

preparation of magnetic thin-film tips21. We used Fe-coated probe tips,

which—in the absence of an external magnetic field—are magnetically in-plane

sensitive with respect to the sample surface. Typical tunnelling parameters in

this study were U = 4 mV (sample bias) and Iset = 30 nA (set-point of the

tunnelling current). The tip magnetization can be reversibly forced into the

direction along the tip axis by the field of a superconducting magnet

(maximum field µ0H = 2.7 T) leading to out-of-plane sensitivity.

Received 28 November 2005; accepted 23 March 2006; published XX Month XXXX.
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By means of Monte Carlo simulations, magnetic configurations withvorticesare shown to appear in ultra-
thin magnetic films with exchange and dipolar interactions. The stability of these vortices is studied in detail.
The presence of perpendicular anisotropy and external magnetic field is also investigated. A magnetic soliton
is shown to appear during in-plane magnetization reversal.@S0163-1829~99!01005-X#

Recent experiments on epitaxial magnetic layers1 have in-
troduced a class of two-dimensional~2D! magnetic systems.
Different complex domain structures with some evidence for
defects have been observed in thin films and bilayer systems
by means of Foucault imaging,2,3 and in nanostructures, by
magnetic force microscopy experiments.4 Complex magnetic
structures are inherent in such systems because of competi-
tions between short-range and long-range interactions. Re-
cent theoretical works on domain structures of vector spins
in magnetic monolayers have been performed either by semi-
analytical calculations on conjectured configurations,5 or by
Monte Carlo simulations.6,7 These theoretical studies provide
evidence for the existence of several solutions for spin con-
figurations. Major questions remain in such 2D complex sys-
tems: Are there uniform stable spin configurations or not,
and if not, are there intrinsic topological defects and how are
they organized? In order to answer these questions, numeri-
cal studies of the stability of realistic magnetic configura-
tions with vector spins are needed. This is the aim of this
paper. Spin configurations of much larger systems than those
considered before6,7 are obtained by means of extensive
Monte Carlo~MC! treatments: Initial random configurations
are submitted to a long annealing at a high enough tempera-
ture followed by a stepwise slow cooling down in order to
obtain equilibrium spin configurations at very low tempera-
ture. Two particular configurations both with and without
MC relaxation are also studied for energy comparison.

The general Hamiltonian of a monolayer lattice in thex-y
plane with three-component vector spinsS and S51 in-
cludes local exchange, dipolar interactions, perpendicular an-
isotropy, and external field:

H52(̂
i j &

J Si•Sj1D(
ij

S Si•Sj

rij
3

23
~Si•rij!~Sj•rij!

rij
5 D

2A(
i

Si,z
2

2(
i

H•Si . ~1!

HereJ is the exchange interaction which is assumed to be

nonzero only for nearest-neighbor couplings.D is the dipolar
coupling parameter and the running site subscriptsi and j
define the in-plane vectorrij . The parameterA measures the
perpendicular single-site anisotropy energy. The external
field H may have any direction.

Simple remarks can be deduced from a scaling approach.
They enable us to consider very large samples which could
not be introduced directly in the present numerical computa-
tion. Let us define the dimensionless parameterK
5D/(Ja3) with the lattice parametera. Without anisotropy
and without external field, the scaling parametera remains
the only free variable: Different ratiosD/J can be considered
as issued from a single case with a givenK value but with
different effective lattice parametersa. As usual, this size
scaling is valid as far as the discrete character of the lattice
can be neglected. Thus increasing the dipolar couplingD
while keeping the exchange couplingJ constant amounts to a
mere increase of the effective lattice parametera. In the
usual magnets, the ratioD/(Ja0

3) is of the order of
1023–1024, wherea0 is a typical atomic distance in metals.
Thus, for D/J50.1, a'5a0–10a0 and for D/J51, a
'10a0–20a0 . So large values ofD/J are relevant to large
samples. In the present work, we used large values ofD/J to
consider scales much larger than a few tens of atomic dis-
tances.

In the present calculations, samples with free boundaries
are considered. It is well known that dipolar contributions
depend on the shape of the sample. This is the demagnetizing
field effect. Without anisotropy and without external field,
our final MC spin configurations at very low temperature are
in-plane, in keeping with known results from magnetostatics.
In addition, the boundary-layer spins are in general parallel
to the sample boundary. This is in agreement with the van
den Berg’s geometrical approach to in-plane domain struc-
tures in 2D spin configurations.8 We present results for disk-
shaped and rectangle-shaped samples. Typical low-
temperature spin morphologies obtained in this work are
shown in Fig. 1 for disks of 10 192 spins on a triangular
lattice with D/J50.1, D/J51, andJ50, respectively. The
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sample diameter covers about 106 effective spin sites. The
MC calculations have been performedwithout cutoff length
in the dipolar interactions. As will be discussed below, this is
important because the screening of dipolar interactions due
to in-plane configurations is very weak.

In the caseD/J50.1, i.e., at submicrometer size in a re-
alistic material~disk diameter'500a0–1000a0), the ener-
gies per spin obtained for the above-mentioned configura-
tions are all quite close to each other. The ferromagnetic
configuration has even a lower energy than the optimal MC
configuration shown in Fig. 1 which contains only a few
vortices. Thus for a sample of such a size, only one or two
vortices are present in the ideal structure.

WhenD/J51, i.e., at a larger size in a realistic material
~disk diameter'1000a0–2000a0), the ferromagnetic con-
figuration has the highest energy among all the considered
configurations. This is evidence for the stability of configu-
rations with several vortices in the sample at such a mesos-
copic size.

Finally, in the pure dipolar case, i.e., at a macroscopic
scale in a realistic material, configurations obtained from MC
simulations present many vortices with an energy per spin
somewhat higher than the one obtained for just a single cen-
tral vortex. In fact, a realistic spin configuration contains
probably several vortices but less than what we found after
several thousand MC steps per spin when starting from a
random initial configuration. The reason for this limitation is
that the single-spin MC procedure makes any vortex motion
very difficult because vortices are correlated. However, ex-
pulsion of vortices is observed, generally by pairs, during a
long time MC relaxation at a low temperature. Every pair
expulsion is associated with a small stepwise energy drop.
Thus the relaxation process is very long. This shows evi-
dence of the strong frustration effects at all scales due to the
long-range dipolar interactions.

All structures shown in Fig. 1 exhibit severalvortices.
The numbers of clockwise vortices and counterclockwise
vortices are nearly equal. More precisely, one may define a
local vorticity parameter asqi5(a/2)(curl Si)z , with uqi u
<1. This enables us to draw up the vorticity map of our
samples. Figure 2 shows an example of the sign and strength
of the spin field vorticity for the pure dipolar case. Spin sites
with vorticity of strong absolute value define two interwoven
networks of continuous lines which link the cores of vortices
of the same chirality. It should be noticed that these strong
vorticity lines are the domain walls. The local vorticity pa-
rameterqi defined above provides an elegant way to find out
all domain walls in a given sample. Let us mention that the
strong vorticity lines are somewhat similar to von Ka´rmán
streets which link vortices of the same sign in 2D turbulent
flows.9 Such an analogy is probably connected with the
strong spatial inhomogeneity of the dipolar field.

The vortex spatial distribution is analyzed by means of
pair-distribution functions~PDF!. When vortices of both
signs are considered all together, they are distributed at ran-
dom, as seen in the pictures of Fig. 1; their PDF has no
significant structure. However, the PDF of vortices of a spe-
cific sign gives evidence for short-range repulsion. Thus the
presence of vortices of both signs ensures a medium-range
screening of the effective interaction between vortices. It
must be noticed that the introduction of any cutoff length in

FIG. 1. Low-temperature spin configurations. Samples are disks
of 10 192 vector spins on a triangular lattice:~a! D/J50.1, ~b!

D/J51, ~c! pure dipolar coupling:J50.

3330 PRB 59BRIEF REPORTS



145

the dipolar interaction leads at the end of the MC thermali-
zation process to a rather ordered vortex lattice. The lattice
parameter of this lattice is approximately equal to the cutoff
length. This has been checked for different cutoff lengths. It
proves that the screening is very sensitive to the long-range
part of the dipolar coupling. However the spin energy is only
just altered by the cutoff. For instance, in a rectangle-shaped
sample of 10 201 spins with pure dipolar couplings, and for
cutoff lengths of 15a and 20a, energy differences compared
to the full coupling case are found not to exceed 1%. In
liquid crystals, similar ordered lattices of topological defects
have been observed, as in cholesteric and smectic thin films
under mechanical tension.10 Here electric dipolar couplings
play the same role as magnetic dipolar interactions in our
case.11 In liquid crystals, ion-induced screening yields a
natural cutoff length and could be the reason for the appear-
ance of such an order.

For disks of 10 192 spins on a triangular lattice, the low-
temperature energies per spin for differentD/J ratios are
compared in Table I for~i! three MC relaxed magnetic struc-
tures derived from different initial configurations, and for~ii !
two unrelaxed particular configurations. In all considered
cases, the lowest energy is obtained for the configuration
with a single central vortex. After a long relaxation process
which ends at a very low temperature, the configuration with
a single central vortex remains the one with the lowest en-
ergy among the considered configurations. This proves the
stability of vortex configurations in all these cases.

When introducing a large enough perpendicular anisot-
ropy in the problem, all MC relaxed configurations contain
many out-of-plane spins. The average value^Sz

2& is a good
measure of the transition from in-plane spins towards per-
pendicular spins. This spin reorientation transition occurs
when the uniaxial anisotropy energy is of the order of mag-
nitude of the dipolar interaction energy. It is characterized by
the appearance of several domains of twisted bunches of
nearly up spins or down spins. These domains are sur-
rounded by domains with almost in-plane spins.12 A detailed
study of the reorientation transition will be given
elsewhere.13

FIG. 3. In-plane field hysteresis loop:~top! magnetization,~bot-
tom! spin energy vs applied field.

FIG. 4. Snapshot of a double-wall magnetic soliton at the in-
plane coercive field.D/J50.1,Hx /J520.6,kBT/J50.01.

FIG. 2. Enlarged portion of Fig. 1~c! showing domain walls
defined byqi ~thick arrows!. The walls connect vortices of the same
sign. Here pure dipolar coupling;kBT/(D/a3)50.01.

TABLE I. Comparison of average energies per spin at very low
temperature. Energy unit5J (5D for pure dipolar case!.

Energy per spin
D/J50.1 D/J51 J50

MC relaxation 23.220 25.662 22.701
Ideal ferro 23.227 25.595 22.632
Ferro1MC 23.223 25.619 22.616
1 central vortex 23.234 25.703 22.743
1 vortex1MC 23.231 25.700 22.740

PRB 59 3331BRIEF REPORTS



146 8. Papers on Dipolar and Multipolar Systems

The introduction of a high enough external fieldHz nor-
mal to the surface leads also to the appearance of out-of-
plane spins with a similar transition towards an Ising-type
system. However, this transition occurs at a field value which
is much larger than the dipolar field one.12,13On the contrary,
the application of a moderate in-plane external fieldHx is
enough to saturate the in-plane magnetization. A typical
rectangle-shaped magnetizationversusapplied field hyster-
esis loop and the respective energyversusfield curve are
reported in Fig. 3 forD/J50.1. This gives evidence for a
sharp quasistatic coercive field. Taking advantage of the
slowness of the MC relaxation process at low temperature,
we are able to show in Fig. 4 forD/J50.1 a typical spin
snapshot taken during magnetization reversal process. The
latter occurs at a field just larger than the coercive field. The
rapid propagation of the in-plane domain wall as a solitary

wave, i.e., as asoliton with a double wall, is also evidence
for strong nonlinear effects in this problem. Let us mention
that some snapshots obtained in this work are very similar to
those found experimentally for soft thin films; see Fig. 8 of
Ref. 14.

In conclusion, let us mention that vortices were intro-
duced as intrinsic defects in the general problem of 2D
systems.15 What we have shown here is that vortices are not
only possible patterns in 2D magnetic systems with long-
range dipolar interactions but that they do belong to the
stable spin configurations in ultrathin films.
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Abstract

The multipole moments and multipole–multipole interactions of uniformly

polarized particles have been calculated based on the fundamental theory of

electrostatics. As the polarization of the particles is uniform, only surface

charges are considered. The polarization may have its origin in magnetization

or ferroelectricity or be an intrinsic property of molecules. It is demonstrated

that, depending on the geometry of the particles, the higher order interactions

can be comparable to or even stronger than the dipole–dipole interaction. The

higher order moments give rise to an additional energy contribution in arrays

of close packed polarized nanoparticles. The influence of particle aspect ratios

as well as array periodicity is discussed.

1. Introduction

Miniaturization plays an important role in modern physics and chemistry as it gives access

to new phenomena that can be used in technical applications. It is desirable to increase

the density of clusters, dots and micelles, which is correlated with a decrease of their size.

Often the particles are polarized or charged. In that case the particles interact. The strength

of the interaction increases with decreasing interparticle distance and can be described by

means of the multipole expansion. A general calculus for multipole moments can be found

in textbooks [1]. However, higher order moments are only calculated to describe molecular

orbitals in physical chemistry [2]. In all other cases (magnetic arrays, ferroelectric arrays,

colloids etc) the calculations are restricted either to the pure dipole–dipole interaction between

the dots [3] or to the first multipole correction to the dipolar coupling [6, 4, 5]. The higher

order contributions have not been studied systematically as terms beyond the dipolar one are of

minor importance for special cases of zero-thickness in-plane magnetized squares [4] /discs [5].

Only that kind of particles has been addressed in the literature. However, experimentally and

industrially produced arrays consist of particles of variable geometry depending on material

0953-8984/04/499037+09$30.00 © 2004 IOP Publishing Ltd Printed in the UK 9037
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and method of preparation. Thus, a general procedure for the calculus of multipole moments

of polarized nanoparticles as a function of aspect ratio and symmetry is highly needed as the

knowledge of the interaction energy of higher order multipole moments is crucial for further

investigations on the magnetic order and magnetic phase transitions in stray field coupled

systems.

The multipole expansion may be made either in Cartesian or in spherical coordinates.

The advantage of the Cartesian expansion is that only real numbers are required. However,

each term of the expansion is a tensor. The order L of the tensor is equivalent to the order

of the expansion. The number of independent tensor components of a three-dimensional

symmetric tensor increases with the square of L, thus it is a formidable task to treat terms with

rank higher than two (quadrupole moments) [4, 6]. The spherical expansion needs complex

numbers but its complexity does not change with the order of expansion as the number of

independent components is proportional to L. So, it seems that almost any order can be

calculated within reasonable effort. However, the treatment of a planar charge distribution in

spherical coordinates leads to very complicated integrals. To avoid this difficulty we use the

spherical harmonic formalism but express it in Cartesian coordinates. In this way we define

a general procedure to calculate the multipole moments and the corresponding interaction

energies of axially symmetric particles. This symmetry class has a wide range of application,

e.g. in storage media [7–9]. We demonstrate that for prismatic particles with mirror symmetry

only multipole moments of the same symmetry are different from zero. All other multipolar

contributions are extinct. This permits us to decrease drastically the computational efforts for

calculation of magnetostatic interactions in magnetic/electric arrays. For certain geometries

the interaction due to higher order moments is of the same order of magnitude as the dipolar

coupling. Hence, it must be considered in the description of order phenomena in close packed

arrays or hysteresis and switching behaviour of magnetic or ferroelectric particles.

For the sake of simplicity we restrict the discussion to particles with n-fold rotational

symmetry that are polarized parallel to the axis of symmetry or have charged base planes.

Although we discuss in this paper only axial systems with point-symmetriccharge distributions

of negative parity the theory can be easily generalized to positive parity or other geometries,

e.g. in-plane polarized discs.

2. Multipole moments of symmetric particles

The multipole moments of a charge distribution ρ(r) in spherical coordinates r = (r, θ, ϕ)

are defined by [1]

Ql m =
∫

V

dV ρ(r)Rl m(r) (1)

where the integration is performed over the volume V that encloses ρ(r), weighted by the

regular normalized spherical harmonic Rl m(r) [1] (see also (4))

Rl m(r) =
√

4π

2l + 1
r lYl m(θ, ϕ). (2)

The spherical harmonics Yl m(θ, ϕ) represent a complete set of orthogonal functions on the

sphere [10]. They are numbered by two independent parameters l and m corresponding to the

two degrees of freedom on a sphere θ and ϕ. The far-field potential is [1]

�(r) = 1

4πµ0

∞
∑

l=0

l
∑

m=−l

Il m(r)Q∗
l m (3)
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Figure 1. Scheme of a nanoparticle with fivefold (n-fold) symmetry. Every surface can be divided

into five (n) equivalent isosceles triangles with edge length d. The particle is polarized in the

z-direction.

(This figure is in colour only in the electronic version)

with the irregular normalized spherical harmonics

Il m(r) =
√

4π

2l + 1

Yl m(θ, ϕ)

r l+1
(4)

and Q∗
l m the complex conjugate of Ql m . The field can be determined as the negative gradient

of the potential F = −∇�. To ensure the uniqueness of the expansion, the origin of the

coordinate system must coincide with the centre of charge

rs =
∫

V
dV r · |ρ(r)|

∫

V
dV |ρ(r)| , (5)

i.e. rs = 0; otherwise even the expansion of the potential of a point charge includes higher

order moments. The remaining freedom of rotation is handled by tensor transformation rules

for spherical harmonics given in [10].

2.1. The relationship between particle symmetry and multipole moments

Let us assume a nanoparticle with n-fold symmetry (n > 1) within the x–y-plane, which is

polarized in the z-direction (figure 1). The symmetry axis is parallel to the polarization.

The upper surface of the particle is positively charged with the surface charge density

σ(r) = µ0n · M(r) due to uncompensated dipoles, with the unit vector n perpendicular

to the surface and the magnetization vectorfield M(r). Hence, with this definition the unit

for the magnetic charge is V s and the magnetic dipole moment is measured in V s m. The

bottom charge is the mirror image of the positive charge distribution at the top of the particle.

To integrate (1) explicitly, we divide the surface into n identical triangles (figure 1). Then the

Ql m are calculated by the sum over the triangles (0 � j � n − 1) of the top and the bottom

surfaces. As the charged surfaces are planar we replace the volume charge density ρ(r) and the

volume integration (1) by the surface charge density σ(r) and an integration over the surface

element dS.

Ql m =
n−1
∑

j=0

(
∫

j th top-triangle

dS |σ(r)|Rl m(r) −
∫

j th bottom-triangle

dS |σ(r)|Rl m(r)

)

. (6)

Due to the symmetry of spherical harmonics

Yl m(θ, ϕ) = (−1)l+mYl m(π − θ, ϕ) (7)
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Table 1. The multipole moments Ql m (in units of the surface charge density) up to the order

L = 7 of a particle with fourfold symmetry. All Ql m with even l vanish.

l m = 0 m = 4a,b

1 2hd2

3c hd2
(

h2

2
− d2

)

5 h5d2

8
− 5h3d4

6
+ 7hd6

12
−

√

7
10

hd6

4

7 h7d2

32
− 7h5d4

16
+ 49h3d6

48
− 3hd8

8

√

33
14

hd8

8
−

√

77
6

h3d6

16

a m must be zero or a multiple of 4.
b Ql −m = (−1)m Q∗

l m due to the symmetry of spherical harmonics.
c Hence, Q3 0 = 0 for h =

√
2d, i.e. a cube.

the sum over the bottom triangles is incorporated into the first sum by the term (−1)l+m+1. The

azimuthal symmetry Yl m(θ, ϕ) ∝ exp(imϕ) allows us to write

Ql m =
n−1
∑

j=0

∫

j th top-triangle

dS (1 + (−1)l+m+1)|σ(r)|Rl m(r)

Ql m =
∫

one top-triangle

dS (1 + (−1)l+m+1)|σ(r)|Rl m(r)

n−1
∑

j=0

exp

(

im
2π

n
j

)

=
∫

one top-triangle

dS (1 + (−1)l+m+1)|σ(r)|Rl m(r)nδ0,mod(m,n) (8)

where the Kronecker δ is unity for n|m or m = 0 only.

The symmetry properties of (8) lead to several conclusions. Multipole moments with

even l exist for n � 3 only and no quadrupole moment (l = 2) is allowed. If l is even

m must be odd. Except for m = 0, the smallest m is m = n as n must be a factor of m

because of the Kronecker δ. Therefore, the lowest moment with l even is (l, m) = (4, 3) for a

threefold symmetry. The first possible multipole moment with even l for a fivefold symmetry

is (l, m) = (6, 5). Additionally, all particles with even rotational symmetry do not possess

multipole moments with even l. This can be seen from the parity properties of Yl m(θ, ϕ)

P̂Yl m(θ, ϕ) := Yl m(π − θ, π + ϕ) = (−1)mYl m(θ, ϕ). (9)

If the charge distribution has a negative parity (σ(−r) = −σ(r)), which is the case for a

particle with n even, the integration reduces to

Ql m =
∫

one top-triangle

dS (1 + (−1)l+1)|σ(r)|Rl m(r) · n · δ0,mod(m,n) (10)

and l must be odd.

Tables 1 and 2 give the low order moments of a particle with fourfold and cylindrical

symmetry, respectively, as a function of the surface area (∝ d2) and the height h of the particle.

As expected the dipole moments are proportional to d2 × h. The dependence of the multipole

moments on the effective aspect ratio h/(
√

2d) of a particle with fourfold symmetry is shown in

figure 2. The functions Ql m(h, d) may cross zero. This happens for example for the octopole

moment of a cube [11] (see figure 2). In the limit of small thicknesses the octopole moment

reaches −25% of the dipole moment. This geometry corresponds to sizes of particles often used

in experimental studies [12–14]. For vertically elongated particles, such as arrays of magnetic

nanocolumns [15, 16] or liquid colloidal crystals with rod-like components [17], the magnitude
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Figure 2. (a) The low order multipole moments Ql m (normalized to Q1 0) of particles with

fourfold symmetry with height h and edge length a. For h → 0 Q3 0 reaches −25% of Q1 0 .

(b) The low order multipole–multipole interaction energies E(lA, lB ) (normalized to the dipole–

dipole interaction energy E(1, 1)) of particles with fourfold symmetry with height h and edge length
a. The parameters of E(lA, lB ) specify the multipole moments lA and lB that interact (including

the sum over m A and m B).

Table 2. The multipole moments Ql m (in units of the surface charge density) up to the order

L = 7 of a particle with cylindric symmetry. All Ql m with even l vanish.

l m = 0a

1 πhd2

3 π
4

hd2(h2 − 3d2)

5 π
16

hd2(h4 − 10h2d2 + 10d4)

7 π
64

hd2(h6 − 21h4d2 + 70h2d4 − 35d6)

a m must be zero for symmetry reasons.

of the octopole moment exceeds that of the dipole moment. Thus, many experimental systems

require the consideration of higher order multipole moments while in the case of elongated

polarized objects the consideration of octopole moments is indispensable.

3. The energy contribution of multipole moments with order L � 1

Exact analytical solutions include implicitly all expansion terms. However, one cannot

distinguish between the contributions from different moments, i.e. it is impossible to assign the

formation of superstructures in an ensemble of particles to particular features of their geometry.

The calculation of the higher order multipole moments of a particle gives the possibility to

predict the behaviour induced by multipole terms solely from the knowledge of the single

particle and the array geometry. Thus, the use of higher order multipole moments is not meant

to substitute analytical solutions, but reveals a new, rather simple treatment to distinguish

symmetry effects due to single-particle properties on all length scales. The multipole moments

give an additional contribution to the magneto-static interaction. The exact interaction energy,

including all multipole terms, can be found in the literature, analytically solved for uniform

magnetized bodies with fourfold symmetry [18]. However, the expression for the potential is

very complicated and even more complex for the interaction energy.

Though the expansion of the potential of a charge distribution is straightforward, the

expansion of the interaction of two charge distributions requires a more complex derivation,

particularly in the case of intersecting charge distributions, which are included in the

sophisticated treatment of that problem [19]. The formulae given in [19], however, demand a

transformation of the coordinate system for each pair interaction. We focus on the most general

formulation for non-intersecting charge distributions [2] to obtain results that are independent

of the coordinate system.
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Table 3. Multipole–multipole interaction energies (in units of σ 2(4πµ−1
0 )) of two particles with

fourfold symmetry. The particles have an edge length a =
√

2d and height h. The edges are

parallel to the coordinate axes and the distance vector between the particles is RAB = R · ex .

Every entry of the table represents an interaction of the moment Q A
lA

with QB
lB

. The index m is

omitted as the summation over m is carried out. As the table is symmetric, doubled entries are left

blank for clarity.

Q A
1 Q A

3 Q A
5

QB
1

4h2d4

R3 − 3h2d4(h2 − 2d2)

2R5
h2d4(15h4 − 100h2d2 + 28d4)

32R7

QB
3

25d4(h3 − 2hd2)2

16R7 − 7h2d4(105h6 − 910h4d2 + 1692h2d4 − 584d6)

768R9

QB
5

7h2d4(567h8 − 7560h6d2 + 28776h4d4 − 23840h2d6 + 9328d8)

4096R11

If RAB is the distance vector from charge distribution A with multipole moments Q A to

charge distribution B with multipole moments QB the interaction energy is

E AB = 1

4πµ0

∑

lA lB m AmB

TlAlB m AmB
(RAB)Q A

lA m A
QB

lB mB
(11)

with the geometric interaction tensor TlA lB m AmB
(RAB) [1]

TlA lB m AmB
(RAB) = (−1)−lB I ∗

lA +lB m A+mB
(RAB)

×
√

(lA + lB − m A − m B)!

(lA − m A)!(lB − m B)!

(lA + lB + m A + m B)!

(lA + m A)!(lB + m B)!
. (12)

The dependence on the distance is given by I ∗
lA +lB m A+mB

(RAB). Hence, it follows from (12)

that the energy contribution from the moments Q A
lA

and QB
lB

of order lA and lb respectively

decreases with increasing distance as R−λ
AB and λ = lA + lB + 1. Consequently, higher order

multipole moments are important if R � d . The infinite series converges to the exact solution.

The multipole–multipole interaction energies for two particles with square base of edge

length a and height h (edges parallel to the coordinate axes) with distance vector RAB = R ·ex

have been calculated and are given in table 3. The multipole–multipole interaction energies

as a function of the particle aspect ratio and R = 1.2a are shown in figure 3. An interparticle

distance of R = 1.2a is in the range of experimental values (e.g. R = 1.1a in [20] and

R = 1.4a in [21]). For small thickness h the dipole–octopole energy is about 26% and the

octopole–octopole interaction is close to 19% of the dipole–dipole energy. As the octopole

moment vanishes for a cube, the dipole–octopole interaction energy crosses zero at h/a = 1,

while the octopole–octopole interaction energy has its minimum value, i.e. zero. For vertically

elongated particles the multipole–multipole interactions are even stronger. The energy of

multipole–multipole interactions between two particles with fourfold symmetry as a function

of the interparticle distance R is presented in figure 3. One sees that for h/a = 0.4 and R = 2a

the pure dipolar approximation gives only 80% of the total energy. Obviously, for R � 2a

the octopole moment must be considered. For R � 1.2a the 25-pole brings further important

energy corrections. Hence, our quantitative results can be directly applied to analyse the

magnetostatic interactions between square dots of the patterned Co70Cr18Pt12 perpendicular

media [21].

The interaction energies that correspond to the geometry and material of [21] are calculated

in table 4. For R = 100 nm the interaction energy between two particles of size of

70 × 70 × 20 nm3 due to the octopole moments is 17% of the dipole–dipole energy. For
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Figure 3. The sums of multipole–multipole energies up to order L = 1, 3, 5 normalized to the
total energy Etot as function of the interparticle distance R. The aspect ratio is h/a = 0.4.

Table 4. The temperature T of the multipole–multipole interaction energies E = kBT of two

particles with fourfold symmetry, where kB is the Boltzmann constant. The particles have an edge
length a = 70 nm and height h = 20 nm. The edges are parallel to the coordinate axes and the

distance vector between the particles is RAB = (100 nm)ex . Every entry in the table represents

an interaction of the moment Q A
lA

with QB
lB

. The index m is omitted as the summation over m is

carried out. For comparison the energy of 1/2µ0 M2
S V/kB = 9.44×105 K, where V is the particle

volume and MS = 4.60 × 105 A m−1. The numbers in brackets correspond to the values for an

infinite square lattice. As the table is symmetric, doubled entries are left blank for clarity.

Q A
1 Q A

3 Q A
5

QB
1 14 719 K (1.33 × 105 K) 2484 K (0.13 × 105 K) 84 K (369 K)

QB
3 1165 K (5150 K) 164 K (685 K)

QB
5 140 K (572 K)

an infinite square lattice the octopolar energy per particle exceeds 13.5% of the dipolar one.

The decrease of the octopolar contribution to the total magnetostatic energy density is due to

the faster drop of its strength with the distance. Indeed, the dipolar lattice sum for a square

lattice is S(1, 0, 1; 3/2) = 4β(3/2)ζ(3/2) ≈ 9.034,1 i.e. in an infinite lattice the field on one

lattice site is approximately nine times the field due to one nearest neighbour while for the

dipole–octopole interaction the factor is S(1, 0, 1; 5/2) ≈ 5.01; this equals 56% of the factor

for the dipolar interaction. Nevertheless, even a 13.5% effect may significantly change critical

properties of an array. For example, a critical temperature Tc at which an array becomes ordered

due to dipolar plus octopolar interactions will increase by ≈13.5% comparably to a pure dipolar

case. Hence, in order to allow for independent particle switching for the perpendicular memory

applications one should increase R beyond 100 nm.

In the case of the system from [21] the dipolar interaction alone can induce a long-range

order in the array for R < 150 nm as the strength of the dipole–dipole coupling E(1, 1) exceeds

room temperature (see table 4). A more interesting situation arises for the case of dots with

smaller dimensions 30 × 30 × 4 nm3. In this case the dipole moments of dots decrease and a

long-range dipolar ordering cannot be stabilized in an array even for very small interparticle

distance of R = 40 nm (E(1, 1) � 300 K). The octopole–octopole and dipole–octopole

contributions increase the total magnetostatic energy by ≈30% so that the total magnetostatic

energy increases to almost 400 K. This is well above the room temperature. Hence, in a certain

temperature range a long-range magnetic order in that case can be established. In contrast to

the previous situation, however, it is only ensured via higher order magnetostatic contributions.

1 Where S(a, b, c; s) =
∑′

i j (ai2 + bi j + cj2)−s excluding i = j = 0 and β(z) and ζ(z) are the Dirichlet beta

function and the Riemann zeta function, respectively [22].
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Table 5. The same as in table 4, but for particles with an edge length a = 8 nm and height

h = 2 nm. The distance vector between the particles is RAB = (9 nm)ex . In this case the
self-energy is 1/2µ0 M2

S V/kB = 1233 K.

Q A
1 Q A

3 Q A
5

QB
1 34.4 K (311.2 K) 9.6 K (48.7 K) 0.7 K (2.9 K)

QB
3 7.4 K (32.7 K) 1.9 K (7.8 K)

QB
5 2.4 K (9.9 K)

The third interesting situation arises when the particles have dimensions within the

superparamagnetic regime, e.g. 8 × 8 × 2 nm3 for a material with a weak magnetocrystalline

anisotropy. Magnetic moments in those dots are strongly coupled by the exchange interaction

and can still be described as magnetized objects. In contrast to the previous situation, however,

the anisotropy energy per particle is also comparable with the room temperature and the dots

are dynamically unstable. The dipolar energy is comparable with the room temperature (see

table 5) as in the previous case. The octopole–octopole and dipole–octopole contributions

increase the total magnetostatic energy in an infinite square lattice with period of R = 9 nm by

≈26%. Hence, the multipole–multipole interactions may bring the thermal stability into the

system even in the superparamagnetic regime. This result is in accordance with a recent

experimental study [23] on close-packed Co, NiFe and CoFe/Cu/NiFe magnetic particle

arrays where a stabilization of magnetic configuration against superparamagnetism for small

interparticle distances has been found.

Hence, higher order multipolar terms must be considered in systems of two particles as

well as infinite lattices if the distance between the particles is of the same order of magnitude

as their diameter (R � d). Calculations of higher order magnetostatic contributions for many

experimental situations can be easily made on the basis of table 3.

4. Summary

In conclusion we have developed a procedure to calculate the multipole moments up to

any desired order as well as the correlated interaction energies of axially polarized prism-

shaped particles including cylinders. The theory is scale invariant, but as we treat single-

domain particles, it is of special interest in the nanoscale regime. We demonstrate that

prismatic particles with mirror symmetry do not posses multipole moments of even symmetry

(quadrupoles etc). Only the moments of odd symmetry (octopole etc) exist. Depending

on the geometry and the interparticle distance, the higher order moments can exceed the

dipole moment. Therefore, their contribution to the total energy of an array must be

included in the case of close packed nanoparticles and the treatment solely by the dipole–

dipole approximation is questionable. Higher order contributions may appear as additional

anisotropies and cause anisotropy induced orientational order in colloids or liquid crystals. A

shift of the superparamagnetic/super(anti)ferromagnetic transition might also be possible due

to higher order multipole moments. This will be the subject of future investigations.

References

[1] Stone A J 1996 The Theory of Intermolecular Forces (Oxford: Clarendon)

[2] Popelier P L A and Kosov D S 2001 J. Chem. Phys. 114 6539

[3] Bennett A J and Xu J M 2003 Appl. Phys. Lett. 82 2503



155

Multipole interaction of polarized single-domain particles 9045

[4] Jensen P J and Pastor G M 2003 New J. Phys. 5 68.1

[5] Costa M D and Pogorelov Yu G 2001 Phys. Status Solidi a 189 923

[6] Politi P and Pini G M 2002 Phys. Rev. B 66 214414

[7] Howard J K 1986 J. Vac. Sci. Technol. A 4 1

[8] Scott J F and Paz de Araujo C A 1989 Science 246 1400

[9] Albrecht M, Rettner C T, Best M E and Terris B D 2003 Appl. Phys. Lett. 83 4363

[10] Varsalovich D A, Moskalev A N and Khersonskii V K 1988 Quantum Theory of Angular Momentum (Singapore:

World Scientific)

[11] Yan Y D and Della Torre E 1989 IEEE Trans. Magn. 25 2919
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Multipole moments of in-plane magnetized disks
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The multipole moments of in-plane magnetized disks have been calculated based on the
fundamental theory of magnetostatics. Analytical solutions for disks with uniform magnetization or
an onion state are given explicitly. It is demonstrated that depending on the polarization
configuration, higher-order multipole moments beyond the dipole moment appear. The strength of
the multipole moments can be of the same order of magnitude as the dipolar moment. The
higher-order moments give rise to an additional energy contribution in arrays of close-packed
polarized disks. ©2005 American Institute of Physics. fDOI: 10.1063/1.1847351g

I. INTRODUCTION

Physical properties of magnetic dot arrays are important
from both fundamental and practical points of view as min-
iaturization gives access to new phenomena that can be used
in technical applications. Because of the vanishing interdot
exchange coupling magnetic properties of the arrays are gov-
erned by the magnetostatic interaction and the magnetocrys-
talline anisotropy. Magnetic memory applications require an
increase in the density of dots per unit area, which is corre-
lated with a decrease of dot sizes and interdot distances. With
increasing density of packing higher-order magnetostatic
terms due to the finite dot size may become increasingly
important. The multipolar moments, however, have not been
studied systematically. There are only few investigations on
that subject.1–3 In those studies a leading multipolar correc-
tion to the dipolar interaction has been calculated for uni-
formly magnetized1,2,4 and double-domain dots,3 while the
strength and the order of further multipole moments have not
been determined and noncollinear magnetic configurations
have not been considered.

In the present investigation we derive a formalism that
enables the calculation of multipole moments for magnetized
disks of finite size. Uniformly magnetized particles and non-
uniform onion magnetization configurations5 with different
degrees of inhomogeneity have been considered. We demon-
strate that both the uniform and the onion in-plane magneti-
zation configurations lead to strong multipole moments in
ultrathin disks. The first nonvanishing multipolar terms are
octopolar, while all even momentssincluding quadrupolard
are extinct. For both states the higher-order moments can be
of the same order of magnitude as the dipolar one. Hence,
they can influence the switching behavior of magnetic par-
ticle ensembles and must be considered in the description of
ordering phenomena in close-packed arrays.

II. MULTIPOLE MOMENTS OF CHARGED
OR POLARIZED PARTICLES

To derive the multipole moments of a magnetized disk
we calculate the multipole expansion of a corresponding sur-

face charge distribution. The multipole expansion can be
made either in cartesian or in spherical coordinates. The car-
tesian expansion is more popular as only real numbers are
required. However, each term of the expansion is a tensor.
The orderl of the tensor is equivalent to the order of the
expansion. The number of independent tensor components of
a three-dimensional symmetric tensor increases with the
square ofl; thus, it is a formidable task to treat terms with
rank higher than twosquadrupole momentsd. The spherical
expansion needs complex numbers but its complexity does
not change with the order of expansion as the number of
independent components is proportional tol. Therefore, we
use spherical coordinates as almost any order can be calcu-
lated within reasonable effort and the symmetry is easily
verified due to the well-known properties of spherical har-
monicsssee belowd.

The multipole moments of a charge distributionrsr¢d in
spherical coordinatesr¢ =sr ,u ,wd is defined by6

Qlm =E
V

dVrsr¢dRlmsr¢d, s1d

where the integration is performed over the volumeV that
enclosesrsr¢d, weighted by a regular normalized spherical
harmonicRlm,6

Rlmsr¢d =Î 4p

2l + 1
r lYlmsu,wd. s2d

The spherical harmonicsYlmsu ,wd represent a complete set
of orthogonal functions on the sphere.7 They also have the
properties of a tensor in spherical coordinates of orderl with
2l +1 independent components. To ensure the uniqueness of
the expansion, the origin of the coordinate system must co-
incide with the center of charge

r¢s =

E
V

dVr¢ursr¢du

E
V

dVursr¢du

, s3d

i.e., r¢s=0.adElectronic mail: vedmedenko@physnet.uni-hamburg.de
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III. MULTIPOLE MOMENTS OF IN-PLANE
MAGNETIZED DISKS

Let us assume a disk with a radiusr0, a heighth, and a
base coplanar to thex-y plane. The disk is magnetized in the
x direction sFig. 1d. The center of mass and the center of
charge are identical and coincide with the origin of the co-
ordinate system. Thus, thex-z plane is a symmetry plane
with positive parity while they-z plane has negative parity,
i.e., after a mirror operation with respect to this plane the
charge must be multiplied by −1 to reproduce the initial
state.

The surface charge is proportional to the saturation mag-
netization MS and depends on the magnetic state of the
sample. An expression for the charge distributionrsr¢d of a
uniformly magnetized disksFig. 1d is very complicated in
spherical coordinates, but due to the natural symmetry of a
disk it is trivially proportional to cosw in cylindrical coordi-
nates. Furthermore, the cosine charge distribution can be eas-
ily generalized for nonuniform onion states as the charge
distribution can be expanded likersr¢d~opcp cosp w with ex-
pansion coefficientscp. Due to the symmetry of the onion
configuration only an odd integerp appear. The nonunifor-
mity of the magnetization increases with increasingp. Ex-
pressing the volume element and normalized spherical har-
monics of Eq.s1d in the cylindrical coordinates, one obtains
the following integral:

Qlm
p = m0MSE

−h
2

h
2 dzE

0

2p

r0dw

3Hcosp wFRlmSÎr0
2 + z2,

p

2
− arctan

z

r0
,wDGJ . s4d

The integral in Eq.s4d has polynomial solutions for all inte-
ger p including p=1 for uniform magnetization. For nonuni-
form magnetization additional volume charge appears. How-
ever, this volume charge distribution can be treated with the
same mathematical procedure and is, therefore, not consid-
ered in the following.

As the charge distribution of an onion state fulfills
rs−r¢d=−rsr¢d and thex-y plane is a mirror plane with posi-
tive parity, Eq.s4d can be modified to

Qlm
p = m0MSE

0

h
2 dzE

−p

2

p

2 r0dwHf1 − s− 1dlgf1 − s− 1dmg

3cosp wRlmSÎr0
2 + z2,

p

2
− arctan

z

r0
,wDJ . s5d

The modification utilizes the parity properties ofYlmsu ,wd

P̂Ylmsu,wd ª Ylmsp − u,p + wd = s− 1dmYlmsu,wd. s6d

From Eq. s5d it directly follows that only odd integers are
allowed for l andm. Due to the azimuthal symmetry of the
spherical harmonics,

TABLE I. The multipole momentsQlm
1 sin units of the surface charge den-

sityd up to the orderl =7 of a disk with uniform in-plane magnetization. All
Qlm with evenl vanish.

m=−1a,b

l =1 1
Î2

phr0
2

l =3 1

4Î3
phr0

2sh2−3r0
2d

l =5
Î3

16Î10
phr0

2sh3−10r0
2h2+10r0

4d

l =7 1

32Î14
phr0

2sh6−21h4r0
2+70h2r0

4−35r0
6d

aOnly umu=1 is allowed.
bQl1=−Ql−1

* due to the symmetry of spherical harmonics.

TABLE II. The multipole momentsQlm
5 sin units of the surface charge densityd up to the orderl =7 of a disk

with an onion state. The surface charge disribution can be described byrswd=m0MScos5 w. All Qlm
5 with even

l and evenm vanish.

m=−1a m=−3 m=−5b

l =1 5
8

1
Î2

phr0
2

l =3 5
8

1

4Î3
phr0

2sh2−3r0
2d 5

8

Î5
8 phr0

4

l =5 5
8

Î3

16Î10
phr0

2sh3−10r0
2h2+10r0

4d 5
8

Î35
96 phr0

4s3r0
2−2h2d 3Î7/256phr0

6

l =7 5
8

1

32Î14
phr0

2sh6−21h4r0
2+70h2r0

4−35r0
6d 5

8

Î21

64Î2
phr0

4sh4−5h2r0
2+3r0

4d
Î231

512Î2
phr0

6sr0
2−h2d

aQl−m=s−1dmQlm
* due to the symmetry of spherical harmonies.

bumu=5 is the largest possible value.

FIG. 1. Scheme of a disk within thex-y planesmagnetized inx directiond.
Due to the magnetization a magnetic surface charge emergesspositive
charge% and negative charge*d. In case of a uniform magnetization the
charge is cosine distributed.

10J502-2 Mikuszeit et al. J. Appl. Phys. 97, 10J502 ~2005!
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Ylmsu,wd ~ e−imw = cosmw − i sinmw, s7d

only umuøp are allowed, as the set of trigonometric func-
tions is orthogonal.

Table I gives the low-order moments of a disk with a
uniform magnetization as a function of the surface area
s~r0

2d and the heighth. As expected, the dipole momentQ1−1
1

of a uniformly magnetized disk is proportional to the surface
charges~r03hd and to the distance between positive and
negative chargessr0d. Higher-order multipole moments pos-
sess further polynomial factors depending onr0 and h. The
multipole moments for an onion configuration of the strength
p=5 are listed in Table II. From the comparison of Tables I
and II it can be seen that the dipole moment of an onion state
is slightly lower than that of a uniformly magnetized mon-
odomain. This is due to the decreasing amount of surface
charge with increasingp. The strength of the higher-order
moments as a function of the aspect ratioh/ r0 for p=5 is
shown in Fig. 2. Forh< r0 the multipolar moments are
smaller than the dipolar one. However, in the limit of small
thicknesssh! r0d the octopole momentQ31

p reaches −61% of
the dipole momentQ11

p for all odd p and even the dotriacon-
tapolesQ51

p d is of the order of 0.5Q11
p . Hence, the multipole

moments of ultrathin, in-plane magnetized disks are compa-
rable with their dipole moments.

The described geometry is typical for ongoing experi-
mental studies on magnetic arrays.8,9 In a recent study9 it has
been demonstrated that experimentally observed room-
temperature ferromagnetism in arrays of magnetostatically
coupled, in-plane magnetized dots withh/2r0,1 and small
interdot distance cannot be explained by dipolar interactions
only. The authors suggested without proof that an indirect
exchange interaction may be responsible for the long-range
order. The multipole moments have not been considered at

all in this study. However, as the influence of higher-order
moments quickly increases with decreasing interparticle dis-
tance the common action of the dipolar and the multipolar
interactions may overcome the thermal fluctuations and ex-
plain the experimentally found long-range superferromag-
netic order in magnetic arrays. Hence, further investigation
of the magnetic ordering in magnetostatically coupled arrays
with multipole interactions is highly desirable.

IV. SUMMARY

In conclusion we have developed a formalism to calcu-
late the multipole moments of in-plane polarized disks up to
any desired order. The use of higher-order multipole mo-
ments is not meant to substitute analytical solutions, but re-
veals a new, rather simple treatment to distinguish symmetry
effects due to single particle properties on all length scales.
The theory is scale invariant, but as we treat uniform and
nonuniform magnetization configurations, it is of special in-
terest in the nanoscale regime. Depending on the aspect ratio
and the micromagnetic state of the magnetized disk, the
higher-order moments can be of order of the dipole moment.
Therefore, their contribution to the total energy of an array
must be considered for close-packed disks and the treatment
solely by the dipole-dipole approximation is questionable.
Due to the symmetry properties higher-order multipole mo-
ments can cause additional anisotropies and anisotropy-
induced orientational order. As the interaction energy is in-
fluenced by corrections beyond the dipole approximation the
results are important for the thermal stability close to the
superparamagnetic limit.
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in the numerical [Fig. 2(a)] and in the experimental

[Fig. 2(b)] models. Both studies show that after different

relaxation procedures a micromagnetic pattern can have a

different local arrangement of dipoles. The total energy,

however, is always identical. Thus, the ground state in the

case of J � 0 is highly degenerate. All patterns, theoreti-

cal and experimental, have features in common. Magnetic

moments are ordered in circular loops. The diameters

of the loops are identical all over the sample. The loops

overlap. This overlapping is not accidental but follows

certain rules. Amazingly, these rules coincide with the

recently proposed ‘‘decagonal model’’ of quasicrystals

[8–11].

In 1991 it was realized [8] that the planar Penrose tiling

can be generated using a single kind of tile, a decagon.

Every decagon consists of Penrose rhombuses. In contrast

to the conventional tiling description the decagonal

atomic clusters overlap, which means that they share

atoms with their neighbors. The overlapping rules have

been mathematically proven [9]. Only two types of the

overlap (A and B) are allowed [8]. Location of ‘‘A’’ and

‘‘B’’ in a Penrose tiling are marked in Figs. 1 and 2(a).

The decagons can be easily recognized in the magnetic

microstructure [Figs. 2(a) and 2(b)]. In order to minimize

the dipolar energy the magnetic moments located on the

perimeter of a decagon form closed chains. The moments

are coplanar to the sides of the decagons. The overlapping

rings of magnetic moments can have the same or opposite

sense of rotation. The orientation of the moments that do

not belong to the perimeter of decagons is highly frus-

trated and varies from cluster to cluster. The overlapping

magnetic decagon chains form a quasiperiodic pattern.

In case of pure dipolar interaction the magnetic pattern is

formed on the scale of the tiling constant; i.e., a micro-

scopic pattern is formed. In zero magnetic field this state

is degenerate and represents a manifold of quasiperiodic

spin configurations. All frustrated systems that have

been investigated have either a continuously degenerated,

periodic ground state (spins on a honeycomb, a kagome, a

triangular, a pyrochlore lattice [12]) or a completely dis-

ordered one (spin glasses). The superposition of both

types of frustration has not been reported yet. Thus, a

magnetic system on a Penrose tiling belongs to a new

class of frustrated systems where the degenerated ground

state is aperiodic and consists of two parts: ordered

decagon rings and disordered spin-glass-like phase inside

the decagons.

In the following we will discuss the situation where the

exchange coupling is switched on. In the quasiperiodic

Penrose tiling with high R, i.e., with the strong exchange

interaction, we find a single domain for all cutoff radii

� � a. It means that the exchange coupling acting along

the two shortest bonds (J and J0) is enough to ensure the

ferromagnetic order. However, the degree of magnetic

order increases with increasing �. While the low tem-

perature magnetization is unity for the large exchange

cutoff radius � � 1:176a�, it is �MM � 0:975 for � � a
(R � 10

3). Hence, the ferromagnetic order in quasicrys-

tals depends on the cutoff radius taken for the exchange

interaction. This can cause strong inhomogeneities of the

magnetization at the boundaries of laterally confined

magnet with quasiperiodic structure.

In finite samples on square and triangular lattices

single domain configurations have been found for high

R values while in-plane vortex structures dominate for

R 
 1 [13]. The vortex phase arises as a result of the

influence of the sample boundaries. The dipolar interac-

tion prefers to keep the magnetic moments in the film

plane and parallel to the sample edges to avoid formation

of magnetic poles. The exchange energy cares for the

parallel orientation of the neighboring moments. The

interplay of the different contributions leads to formation

of the vortex structure with dimensions of the sample

size. For the Penrose tiling the situation is completely

different. For all R-ratio and cutoff radii the macroscopic

vortex configuration is energetically unfavorable with

regard to the exchange interaction. When the dipolar

energy becomes strong enough to compete with the ex-

change energy (R< 0:5) the microscopic decagonal

pattern starts to form (Fig. 3). The decagonal pattern

differs from that of the pure dipolar case when exchange

interaction is effective. The strong exchange coupling

lifts the degeneracy of the decagonal magnetization con-

figuration found for J � 0. Magnetic moments are nearly

coplanar with the sides of the decagons as in the pure

dipolar case. The average magnetization, however, is

not zero; i.e., the magnetic moments have some preferen-

tial direction [Fig. 3(a)]. We call such magnetization

configuration quasiferromagnetic decagonal structure. A

FIG. 2 (color). (a) Monte Carlo simulations. Top view of the

portion of the magnetic microstructure in a sample of finite

size for pure dipolar interaction, i.e., R � J=D � 0. The micro-

structure has been obtained for a square sample of about 10 500

vector spins on the Penrose tiling for D=kBT � 100. The spins

belonging to the perimeter of decagons (marked) form closed

chains. The chains overlap according to rules given in Fig. 1.

(b) Experimental model. The perspective view of the mag-

netic microstructure. The red arrows represent the orienta-

tion of dipolar moments of magnets fixed onto the nodes of

the Penrose tiling (rhombuses). The magnets can rotate in the

horizontal plane.
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The spatial variation of the coordination number on the Penrose tiling leads to suppres-
sion of the formation of macroscopic vortex configuration, usual to soft ferromagnetic
films on periodic lattices, in favor of microscopic decagonal pattern. That state repre-
sents a new class of frustrated systems where the structure is aperiodic and consists of
two parts: ordered, stable decagon chains and an unstable, spin-glass phase inside of
the decagons. Virgin magnetizing is a two-step process in that system.
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1. Magnetic Ordering in Quasicrystals

Recent investigations [1–3] show that a long-range magnetic order can exist in quasicrys-

tals despite their aperiodic atomic structure. Experimentally, antiferromagnetic ordering

has been observed in rare-earth-based icosahedral compounds [4]. Theoretically, possible

antiferromagnetic ground states have been studied in the framework of the Ising [1], the

XY [5, 6] and the quantum Heisenberg model [7]. Ferromagnetic microstructure of a two-

dimensional aperiodic film has been derived for three-dimensional Heisenberg spins on a

Penrose tiling [3].

In calculations [3] the long-range dipolar interaction, always existing in magnetic

and ferroelectric materials, has been taken into account. It has been shown [3] that in

ultra-thin film on a Penrose tiling new, decagonal quasiferromagnetic long-range order

appears. In the present investigation I will analyze the reasons preventing formation of usual

ferromagnetic configurations, such as a vortex structure, on a Penrose tiling. Influence of

thermal excitations on the decagonal pattern will be also studied.

2. Energy Considerations

To find out the ground ferromagnetic state on a Penrose tiling we have compared the total en-

ergy density of a macroscopic monodomain, a macroscopic vortex and a Monte-Carlo (MC)

quasiferromagnetic pattern. The quasiferromagnetic pattern has been obtained by means

of MC simulations. The MC procedure is described elsewhere [3]. Two-dimensional films

of classical, three-dimensional magnetic moments S have been studied. The Hamiltonian

Address correspondence to E. Y. Vedmedenko, Institute of Applied Physics, University of Hamburg,

Hamburg, Germany. E-mail: vedmedenko@physnet.uni-hamburg.de
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of the problem is given by

H = J
∑

〈i, j〉

Si · Sj + D
∑

i, j

(

Si · S j

r3
i j

− 3
(Si · ri j )(S j · ri j )

r5
i j

)

(1)

where J is the exchange coupling constant and 〈i , j〉 refers to the nearest neighbors,

D the dipolar coupling parameter and ri j the vector between sites i and j . The samples are

squares or rectangles containing 400, 2500 and 10500 magnetic moments. I have also used

circular areas to crosscheck the results. The vortex and the monodomain configurations have

been constructed artificially. Then, in order to take into account effects of the entropy and

inhomogeneous magnetization the configurations have been relaxed at low temperature by

means of MC procedure. The lowest temperature of the usual MC annealing process kT =

0.05J. . . 0.1J has been used. At that temperature macroscopic patterns cannot be destroyed

by thermal fluctuations while the magnetization is not more homogeneous.

It has been considered in the calculations that the exchange interaction decreases ex-

ponentially with the distance between magnetic moments. The strength of the exchange

coupling is defined as J = J0e(1−ρi j ), where ρi j = ri j/a is the distance between two neigh-

boring moments normalized to the length of the side of Penrose rhombuses a (see Fig. 1).

ρi j takes the lengths of the diagonals of the Penrose rhombuses. The shortest diagonal has

a length of ρi j = 1/τ < 1 with τ - the golden mean. Therefore J ′ = J0e(1−τ−1); i.e., J ′ is

larger than J0. Further interactions become weaker than J0 with increasing distance as in

that case ρi j > 1. As the magnetic ordering depends on the ratio of the exchange to the

dipolar interaction R = J/D and on the radius of the cut-off in the exchange coupling ρ I

have performed calculations for different R and ρ. ρ can take one of four values: ρ = a,

which means that the exchange coupling is considered only along sides and the shortest

diagonal of the Penrose rhombuses (see Fig. 1); ρ = 0.727aτ ; ρ = aτ or ρ = 1.176aτ .

The latter distances correspond to the interactions along the longer diagonals. R has been

varied between 0 (J = 0, pure dipolar interactions) and 1000. The energies of different

configurations versus R for the maximal value of ρ are presented in Fig. 2. As soon as the

energy of the vortex or the quasiferromagnetic structure becomes smaller than the energy

of a single domain a crossing of curves will occur. The point of intersection gives a critical

ratio RC where the transition between different configurations happens. We do not find

any R and ρ where the macroscopic vortex is preferred. The shaded area separates the

phases of the monodomain and the decagonal pattern. The center of the interval where all

FIGURE 1 A section of the Penrose tiling. The Penrose rhombic tiles are indicated. Five

nearest-neighbor distances (the sides and the diagonals of the rhombuses) and their lengths

(τ the golden mean) are given. The two strongest exchange bonds according to two shortest

nearest-neighbor distances are denoted as J0 and J ′.
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FIGURE 2 (Left) Experimentally obtained dipolar decagonal structure. The red arrows

represent the orientation of dipolar moments of magnets fixed onto the nodes of the Penrose

tiling. (Right) Total energy per spin for a monodomain, an ideal vortex and a Monte Carlo

decagonal structure as a function of R = J/D.

three configurations have comparable energy is denoted as RC. For R ≈ RC the magnetic

microstructure consists of ordered regions with the decagonal pattern and local vortices

[3]. Thus, the influence of the boundaries does not lead to the formation of a macroscopic

vortex in a Penrose lattice. In other words the dipolar energy can compete with the exchange

energy only on the scale of the quasiperiodic decagonal microstructure. The reason for this

phenomenon is the spatial variation of the number of nearest neighbors and the exchange

interaction strength in quasicrystals.

2. Thermal Stability of the Quasiperiodic Decagonal Structure

In the remaining section I will discuss the influence of thermal excitations on the decagonal

ordering. To see the time-dependent changes in a microstructure we let run the simulation

for several hundred thousand steps per temperature. Extremely slow annealing procedure

with 30 temperature steps per MC run has been applied. The results have been compared

with an experimental dipolar model made of 309 small magnets on a Penrose tiling. The

magnets can freely rotate in the horizontal plane. An example of the experimental magnetic

pattern is given in Fig. 2. MC configurations have identical features. The decagonal pattern

of pure dipolar system consists of two parts: ordered decagon rings and disordered spins

inside of the decagons. The diameters of the closed loops are identical all over the sample.

The loops overlap. This overlapping is not accidental but follows the rules of recently

proposed “decagonal model” of quasicrystals [8]. Orientations of disordered dipoles are

not static at temperatures kT > 0.2 D. They change continuously during the MC run while

the decagon chains remain stable and the total energy oscillates around its minimal value. In

the experimental model we have simulated the temperature by application of an alternating

magnetic field. When a very weak field is applied the magnetic moments inside of the rings

begin to oscillate. The moments on the perimeter of decagons, in contrast, remain stable

to very high values of the field. In addition to the alternating magnetic field a constant

external magnetic field can be also applied to the structure. Even a strongest possible in-

plane magnetic field was not enough to destroy the experimental decagonal pattern while

the frustrated inner dipoles were immediately aligned. In the simulations the field necessary

for the alignment of the chains must be at least 15 times stronger than that needed for the

alignment of the frustrated moments. Thus, in the quasiperiodic magnetic structure the stable

decagonal pattern coexists with highly frustrated, glass-like phase. That regime corresponds
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to the frustration effects in a Penrose tiling found earlier [9]. Virgin magnetization process

takes place in two steps: switching of the frustrated phase at a weak external magnetic field

and switching of the ordered phase at a higher field.
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Based on Monte Carlo simulations, the stable magnetization configurations of an antiferromagnet on
a quasiperiodic tiling are derived theoretically. The exchange coupling is assumed to decrease
exponentially with the distance between magnetic moments. It is demonstrated that the superposition
of geometric frustration with the quasiperiodic ordering leads to a three-dimensional noncollinear
antiferromagnetic spin structure. The structure can be divided into several ordered interpenetrating
magnetic supertilings of different energy and characteristic wave vector. The number and the symmetry
of subtilings depend on the quasiperiodic ordering of atoms.
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The last few years have shown a boom in investigations
of the spin order in antiferromagnetic films [1,2] moti-
vated by the dramatic changes in the magnetic properties
of such systems induced by frustration. In contrast to the
rather well studied spin structure of antiferromagnets on
periodic lattices, the antiferromagnetic ordering of qua-
sicrystals is the subject of ongoing scientific debate.
Whereas an experimental finding of long-range antifer-
romagnetic order in rare-earth icosahedral quasicrystals
[3] turned out to be an artifact [4], theoretical models that
deal with magnetism on quasicrystals [5] are known to
exhibit long-range magnetic order. Recent inelastic neu-
tron scattering experiments on the Zn-Mg-Ho icosahe-
dral quasicrystal [6] revealed a very peculiar diffuse
scattering pattern with icosahedral symmetry at tem-
peratures below 6 K. Such a pattern, in principle, can
originate from a noncollinear spin arrangement first sug-
gested by Lifshitz from pure geometrical considerations
[7–9]. However, real-space magnetic configurations lead-
ing to those long wave-vector correlations remain obscure
despite recent interesting results for quantum spins [5].
Thus, the knowledge about the spin structure on quasi-
periodic tilings is of basic importance for experiments as
well as for theoretical predictions of new phenomena,
which can be expected due to nontrivial frustration ef-
fects [10].

The patterns found in our theoretical study provide an
explanation for the origin of the antiferromagnetic mod-
ulations observed experimentally in Ref. [6]. While the
spin order in antiferromagnets is usually characterized by
a periodic modulation described by wave vectors on the
order of inverse atomic distances, the spin order in anti-
ferromagnetic quasicrystals admits three-dimensional
noncollinear structures consisting of several interpene-
trating subtilings with longer wave vectors. Here we re-
port on the details of the low-temperature antiferro-
magnetic ordering and the map of the local frustration
for the octagonal tiling.

We discuss the antiferromagnetic Hamiltonian

H � Jij
X

hi;ji
Si � Sj � K1

X

i

�Sz
i �2; (1)

where Si is a three- or two-dimensional unit vector in the
case of classical vector or xy spins, and Sz

i is equal to �1

in the case of Ising spins (so Sx
i � S

y
i � 0); hi; ji denotes

the nearest-neighbor pairs. For an antiferromagnetic sys-
tem, the exchange parameter Jij is positive, and neighbor-

ing antiparallel spins contribute a lower energy than
parallel neighbors. The coefficient K1 is the first-order
anisotropy constant. Our Monte Carlo simulations have
been carried out on finite Ammann-Beenker tilings with
free boundary conditions. The procedure is a simulated
annealing method with at least 15 successive temperature
steps [11]. At each temperature, the convergence of the
relaxation process towards equilibrium has been observed
for any initial configuration after a few thousand
Monte Carlo steps per spin. Hence, the single-spin-update
algorithm is efficient in our case. At the end of the
cooling down process, the total energy is just fluctuating
around its mean equilibrium value. To reduce boundary
effects only the core of a tiling has been analyzed. The
samples on the octagonal Ammann-Beenker structure,
which we concentrate on in what follows, are circular,
containing 2193, 11664 and 53 018 magnetic moments.

The octagonal tiling consists of two motifs: a square
and a rhombus of equal edge lengths a [Fig. 1(a)]. The
diagonal bonds are, usually, neglected in the calculations
[5,12]. We find this disregard physically questionable as
the exchange coupling increases exponentially with de-
creasing interatomic distance. In the present investiga-
tion, the short diagonal of the rhombus and the sides of
the motifs have been considered as nearest neighbors. We
distinguish the two cases Jd > 2J and Jd < 2J, where Jd
denotes the interaction along the short diagonal and the
interaction strength along the sides J is unity. The first
case corresponds to a rapid growth of the exchange
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coupling with decreasing interatomic distance. The two
nearest-neighbor bonds form six local environments with
coordination numbers varying from five to eight as shown

in Fig. 1(b). They occur with relative frequencies �A �
17� 12

���

2
p


 2:9%, �B � �41� 29
���

2
p


 1:2%, �C �
34� 24

���

2
p


 5:9%, �D � �14� 10
���

2
p


 14:2%, �E �
6� 4

���

2
p


 34:3%, and �F � �1�
���

2
p


 41:4% [13].
Taking into account the short diagonals of the
rhombic tiles increases the average coordination
number of the tiling from 4 (the value without diagonals)

to 8�A � 7�B � 6�C � 5��D � �E � �F� � 8� 2
���

2
p



5:17.

First we discuss the Ising system. The square tile of the
octagonal structure is nonfrustrated as every pair of the
moments can be chosen to be antiparallel [Fig. 1(a)]. If we
had not taken the short diagonals of the rhombic tiles into
account, the same would have been true for the entire
tiling, and there would be no frustration, because the
rhombic tiling is bipartite. Now, we consider spins on
short diagonals as nearest neighbors; the rhombic tiles are
always frustrated. If the energy of one nearest-neighbor
pair is minimized by having antiparallel spins, the third
and fourth spins cannot be chosen to minimize the energy
of both of its neighbors [Fig. 1(a)]. The magnetic moment
will necessarily be parallel to one of the neighbors. For
Jd < 2J two out of six possible configurations have
smaller energy as they possess only one pair of parallel
nearest neighbors per rhombus instead of two [Fig. 1(a)].
In this case spins can have one of six possible energy
values corresponding to different local environments
[Fig. 1(b)]. For Jd > 2J the four configurations with the
two parallel bonds have the lowest energy as their weight
is smaller than that of the strong diagonal coupling. The
second case comprises much more different possibilities
of energy distribution. To give a quantitative description
of the local frustration we introduce a local parameter f,

f � jEidj � jEij
jEidj

; (2)

where Ei is an actual energy of a spin i and Eid is a ground
state energy of a relevant unfrustrated vertex. With this
nomenclature, only the central spins of the vertices F and

E are magnetically frustrated fF � 0:4 and fE � 0:8 for
Jd � J < 2J. The Monte Carlo simulations confirm our
reasoning based on the analysis of frustration. Figure 2(a)
gives the frequency distribution of the exchange energy
per atom E for two cases and a top view of a portion of
Ising configuration with Jd > 2J. The energy distribution
for Jd < 2J simply reproduces the frequency of six vertex
configurations. The ‘‘up’’ and ‘‘down’’ configurations are
perfectly ordered and coincide with the black-and-white
model of Niizeki [14]. For large Jd we find eight possible
energy values. The up and down subtilings, however, are
spatially disordered [see the inset in Fig. 2(a)]. We have
calculated the magnetic structure factor

Szz�k� � 1

N

X

r;r0
eik��r�r0�hSzrSzr0i (3)

using the Monte Carlo data for different samples. Here k

is the wave vector and Szr is a vertical component of a
magnetic moment at the position r. The diffraction pat-
tern of the Niizeki configuration coincides with that of

-8 -6 -4 -2 0
0.0

0.1

0.2

0.3

0.4

w (a)

-6 -5 -4 -3 -2 -1
0.00

0.17

0.33

E/J

w

(b)

FIG. 2 (color). The frequency distribution of the energy per
spin on the octagonal tiling for (a) Ising and (b) vector spins.
The solid lines correspond to the case Jd < 2J, the dashed lines
to Jd > 2J. A purely antiferromagnetic interaction at kT �
0:01J is considered. The top views of portions of
Monte Carlo configurations with underlying tilings are shown
as insets. The light and dark circles represent different spins in
(a) and different energies in (b), respectively.

(a)

(b)

1
E

J
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J
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J
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J
= −

A B C D E F

FIG. 1. Configurations for a frustrated Ising antiferromagnet

on (a) elementary tiles and (b) six local environments of the

Ammann-Beenker tiling. The bold lines denote the frustrated

bonds. The open and filled circles represent different spins.
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quantum Monte Carlo calculations [Figs. 5(c) and 5(d) of

Ref. [5] ] and theoretical prediction [9], while the

intensity map of the configuration Fig. 2(a) is almost

structureless. It means that the Ising solution with

Jd < 2J reproduces in essence the antiferromagnetic

superstructure, corresponding to a modulation vector

q � �1
2
; 1
2
; 1
2
; 1
2
�a� [6] in the octagonal tiling, whereas

stronger coupling leads to a spin-glass state.
An exciting question is if the further minimization of

the total energy and frustration by means of the noncol-

linear alignment of magnetic moments is possible. At first

glance the magnetic structure of the low-temperature pure

antiferromagnetic configuration seems to be rather disor-

dered. The analysis of the local energies, however, reveals

several characteristic energetic maxima in the frequency

distribution shown in Fig. 2(b). The simple existence of

the peaks means that there exist different sorts of mag-

netic moments having well-defined relative orientation

to their nearest neighbors. This orientation, however, is

not associated with any absolute direction in space.

Therefore, in accordance with the Mermin-Wagner theo-

rem [15], no long-range order exists in two dimensions

with continuous symmetry, because thermal fluctuations

result in a mean-square deviation of the spins from their

equilibrium positions which increases logarithmically

with the size of the system. The addition of a very weak

anisotropy, which often exists in real samples, does not

change the distribution of the exchange energy, but per-

mits one to anchor the absolute spatial orientation of the

magnetization. Nevertheless, at first glance the total struc-

ture still looks spin-glass-like. In the following, we show

that the antiferromagnetic structure of the octagonal

tiling is perfectly ordered, but the order is nontrivial

and unusual for periodic crystals. We concentrate a fur-

ther description on 3D vector spins while similar results

for xy spins have been obtained.

To obtain an absolute symmetry axis, we apply a very

weak out-of-plane anisotropy K1 
 10�3J to the system.

The squared vertical component of magnetization �Sz�2
becomes finite. The positions of the energy peaks on the

frequency diagram remain unchanged. All maxima are

different from those of the Ising model. It means that the

angles between the neighboring magnetic moments are

not always equal to 180
� or 0�; i.e., the magnetic struc-

ture is noncollinear. The different number of peaks—
eight for Jd < 2J and two for Jd > 2J [Fig. 2(b)]—al-

ready tells us that, in contrast to the Ising case, the

maxima do not coincide with the six vertices of the tiling.

The minimal possible local energy increases from �8J to

approximately �6J for Jd � J or �5:44J for Jd � 2:2J.

The average energy per spin, however, decreases by more

than 0:3J and reaches the value of E 
 �2:85J and E 

�3:30J, respectively. Hence, the increase of the entropy

permits one to minimize the average frustration and the

total energy of the system.
Spatial arrangements of the magnetic moments as a

function of the exchange energy are given in Fig. 3 for

Jd < 2J and in the inset to Fig. 2(b) for Jd > 2J. Each

configuration of Fig. 3 represents a certain energy range

corresponding to one of the eight peaks in the spectrum

of Fig. 2(b). Colors represent the x projection of the

magnetization. The magnetic moments form eight subtil-

ings of different energy (E1; . . . ; E8) which generally do

not coincide with a specific vertex type. The splitting of

the energy and frustration levels is described in detail in

Fig. 3. For example, the vertices B and C (Fig. 1) belong to

the same energy maxima E2 but have different local

frustration fB � 0:24, fC � 0:11 (Fig. 3). At the same

time the central spin of the vertex D can have either the

energy E3 or E4 and, therefore, can have two different

values of the frustration fD1 � 0:01 and fD2 � 0:11 de-

pending on local surroundings. Thus, every configuration

of the Fig. 3 can enclose either a part of the atomic places

belonging to one vertex type or two different vertex types

together. Nevertheless, all structures have a perfect gen-

eral spatial ordering. Each subtiling can be separated into

the energetically degenerate ‘‘right’’ and ‘‘left’’ parts

which also have a perfect quasiperiodic arrangement.

However, not all right or left moments have identical

orientation in space. Figure 4 shows a perspective view

of a portion of a typical Monte Carlo configuration and a

corresponding energy map. The central magnetic moment

has the lowest energy and belongs to the E1 subtiling. Its

eight nearest neighbors have identical energies and corre-

spond to the energy E7 despite having different sets of

mutual angles. The moments forming the next ring have

energy E6. The last ring consists of the alternating E3 and

E6 spins. Figure 4 shows one of the radially symmetric

vertices. However, in the octagonal tiling vertices with a

different surrounding can also be found. The energy dis-

tribution is then different. Hence, the magnetic structure

for Jd < 2J is noncollinear and consists of eight inter-
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E J
f

2 5.35
0.24; 0.11B C

E J
f f

= −

= =
3
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0.01D

E J
f

= −

=
4

2

4.45
0.11D

E J
f

= −

=
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1
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0.43E

E J
f

= −

=
6

2
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0.49E

E J
f

= −

=
7
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0.61F

E J
f

= −

=
8

2

1.65
0.67F

E J
f

= −

=

FIG. 3 (color online). Spatial distribution of magnetic mo-

ments belonging to eight subtilings of a noncollinear configu-

ration on an octagonal tiling consisting of 2193 spins. Jd > 2J.

The light and dark circles represent positive and negative x
components of the magnetization. The in-plane components are

not given for the sake of simplicity. Average values of the

exchange energy E and of the local frustration f per spin are

indicated.
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penetrating subtilings. For Jd > 2J we find only two

subtilings of different energy.

A frequency distribution of the angle between nearest

neighboring moments shows five characteristic angles

close to 60
�, 80�, 120�, 140�, and 180

� for small Jd and

a single mutual angle of 110� for large Jd. Because of this

noncollinearity the energy of the system is decreased.

The diffraction pattern of the whole structure is more

complex than that of the Ising or the quantum-

mechanical [5] model. As the spin structure is noncol-

linear, not only the structure factor Szz but also Sxx and

Syy can be recognized (see Fig. 5). The eightfold Sxx and

Szz patterns contain additional long wave-vector peaks

which could not be identified in the previous investiga-

tions [5]. In dependence on the anisotropy (or on the

initial random configuration for K1 � 0) new peaks

also occur in Syy. The Bragg reflexes found in our study

select a subset of the wave vectors given in Ref. [9], where

n1 � n2 � n3 � n4 is odd. Peaks with n1 � n2 � n3 � n4
even are extinct. According to the nomenclature of

Ref. [9], the following wave vectors can be identified:

�1; 0; 0; 0�, �1;�1; 1; 0�, �3;�2; 1; 1�, �3;�1;�1; 2�,
�1; 1;�1; 0�, �1; 0; 1;�1�, �0; 2;�1; 0�, �0; 0; 1;�2�,
��1; 0; 1;�3�, �0; 2;�2; 1�, �0; 1;�2; 2�. Hence, the non-

collinearity of the spin structure gives rise to selection

rules different from those of collinear models [5,7]. With

an increasing sample size the peaks become more diffuse

and may correspond to the diffuse scattering signal of

Ref. [6].

In conclusion, we demonstrate that the frustrated clas-

sical Ising system with antiferromagnetic coupling on a

quasiperiodic octagonal tiling is perfectly ordered. All

spins can be divided into six quasiperiodic (in the 3D

physical space) or six periodic (in 6D periodic crystal)

subtilings of different energy. Each subtiling corresponds

to the one of six vertex types of the Ammann-Beenker

structure and is degenerated for up and down magnetic

moments. Quantitatively, only two out of six subtilings

are frustrated with the local coefficients fE � 0:4 and

fF � 0:8. The vector spin system admits a three-

dimensional noncollinear magnetic structure. For Jd <
2J, the whole structure can be decomposed into eight

subtilings of different energy which generally do not

coincide with a specific vertex type. All subtilings are

frustrated. However, the total degree of frustration and

the energy of the system is minimized compared to the

noncollinear case. The subtilings are degenerated with

respect to the spin direction. The codirectional spins of

every subtiling reveal perfect quasiperiodic ordering with

a wave vector which is specific for a given subtiling.
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FIG. 5. The calculated Bragg scattering of Sx, Sy, and Sz

components of magnetization for the antiferromagnetic super-

structure. Reflexes indicated by arrows are new in comparison

to previous studies [5].
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FIG. 4 (color). Perspective view of a portion of a Monte Carlo

configuration on an octagonal tiling. The top view of the patch

and the energy map are shown as insets. Magnetic moments are

represented as cones. The cones are colored according to their

vertical magnetization, changing gradually from red for up to

blue for down spins. In the energy map inset, the colors encode

the energy per moment.
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The stable magnetization configurations of antiferromagnets on quasiperiodic
tilings are investigated theoretically. The exchange coupling is assumed to
decrease exponentially with the distance between magnetic moments. It
is demonstrated that the combination of geometric frustration and the
quasiperiodic order of atoms leads to complicated non-collinear ground states.
The structure can be divided into subtilings of different energies. The symmetry
of the subtilings depends on the quasiperiodic order of magnetic moments. The
subtilings are spatially ordered. However, the magnetic ordering of the subtilings
in general does not correspond to their spatial arrangements. While subtilings of
low energy are magnetically ordered, those of high energy can be completely
disordered due to local magnetic frustration.

1. Introduction

In contrast to the rather well-studied spin structure of antiferromagnets on periodic

lattices, the antiferromagnetic ordering of quasicrystals is the subject of ongoing

scientific debate [1–13]. Experimentally, it has been demonstrated that rare earth

containing quasicrystals exhibit spin-glass-like freezing at low temperatures [4, 6].

However, this freezing is different from that of conventional spin glasses. The

observed dependence of the thermoremanent magnetization on the magnetic field

does not follow the spin-glass behaviour and the frequency shift of the freezing

temperature lies between those of a canonical spin glass and of a superparamagnet

[8]. Hence, the free energy landscape of a rare earth quasicrystal is different from

both the highly degenerate distribution of energy barriers in spin glasses and the

single global energy minimum in superparamagnets.

Although the atomic and electronic structure of rare earth quasicrystals is not

completely understood, it has been postulated [8] that the low-temperature micro-

structure of such a magnet resembles geometrically frustrated but site-ordered
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magnetic systems and consists of weakly interacting magnetically ordered clusters.

Another interesting approach is based on recent elastic neutron scattering experi-

ments on a Zn–Mg–Ho icosahedral quasicrystal [7] revealing a very peculiar diffuse

scattering pattern with icosahedral symmetry at temperatures below 6 K. In contrast

to reference [8], the authors interpret the diffraction pattern as that of several inter-

penetrating quasiperiodic sublattices, where all spins point in the same direction [11].

Recent theoretical studies of real-space magnetic configurations on the octagonal

tiling [9, 11–13] demonstrate that the energy landscape, in accordance with [8], is

neither degenerate nor has a single global minimum. All spins can be divided into

several quasiperiodic (in the 2D physical space) or periodic (in the corresponding 4D

periodic hypercrystal) subtilings of different energy.

In the present investigation, we calculate the low-temperature stable anti-

ferromagnetic configurations on several planar quasiperiodic tilings with tenfold

symmetry. In most rare earth intermetallic compounds an oscillatory (RKKY-like)

exchange interaction has been observed. To tackle this complicated problem first

we concentrate on exponentially decreasing exchange coupling corresponding to a

rapid-decaying limit of an oscillatory interaction. It will be demonstrated that

the real-space magnetic structure is generally three-dimensional and non-collinear.

In disagreement with [8], and in accordance with [7], the magnetic structure consists

of several ordered interpenetrating quasilattices with characteristic wavevectors.

2. Simulations and results

We have investigated the magnetic ordering in an antiferromagnet on Penrose, anti-

Penrose, Tübingen triangle [14] and Tie–Navette [15] tilings by means of Monte

Carlo simulations. Two-dimensional films of classical, three-dimensional magnetic

moments S have been studied. The Hamiltonian of the problem is given by

H ¼ Jij
X

hi, ji

Si � Sj � K1

X

i

ðSz
i Þ
2 ð1Þ

where Jij are the exchange coupling constants and hi, ji refers to pairs of spins. Two

cases have been explored: Jij ¼ 1 for all rij � 1 (and Jij ¼ 0 for all rij > 1), and an

exponential decrease of the exchange interaction with the distance between magnetic

moments (which for practical purposes was cut off at distance rij > 2), where rij
denotes the distance between sites i and j (as compared to the edge lengths in the

tiling, which are chosen to have length one). The samples are patches of square or

rectangular shape, containing some 10 500 magnetic moments. We also used circular

areas to check that our results are not affected by the shape of the sample. An

extremely slow annealing procedure, with 50 temperature steps per Monte Carlo

run, has been applied. To see the time-dependent changes in a microstructure, we

ran the simulation for several hundred thousand steps per temperature.

In previous theoretical studies [2, 3, 5] frustrated, two-dimensional structures

have been proposed. In accordance with previous publications, we find that the

ground state of a system with purely antiferromagnetic exchange interactions

is locally frustrated. Under the local frustration f we understand the normalized
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difference between an actual energy Ei of a spin i and a ground state energy Eid of

a relevant unfrustrated vertex with all spins antiparallel to the spin i

f ¼
jEidj � jEij

jEidj
: ð2Þ

In contrast to common folklore, the configurations are three-dimensional. Similar

to the underlying atomic symmetry, the magnetic structure is quasiperiodic, i.e. it

consists of identical units which do not have identical surroundings.

Three-dimensional representations of parts of the low-temperature quasiperiodic

patterns observed for the Penrose and the octagonal tiling are shown in figure 1.

The corresponding configurations represent the characteristic Penrose and Amman–

Beenker ‘stars’, which are also shown in figure 1 for clarity. On the Penrose tiling, the

‘star’-pattern can easily be recognized in the magnetic structure, because the

moments belonging to the perimeter of enclosed ‘stars’ show perfectly antiparallel

alignment. On the octagonal tiling, the situation is more complicated. The central

magnetic moment is neither parallel nor antiparallel to the neighbouring

Figure 1. Perspective view of a portion of a Monte Carlo configuration on the Penrose tiling
(top) and the octagonal tiling (bottom). Top views of the corresponding patches are shown on
the right. The magnetic moments are represented as cones.
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magnetic moments. Its eight nearest neighbours have different sets of mutual angles.

The moments forming the next ring have still another orientation with respect to

their nearest neighbours. The non-collinear alignment of the neighbouring moments

indicates that the system is geometrically frustrated, i.e. there is no possibility to

align all neighbours in an antiparallel arrangement. Similar non-collinear antiferro-

magnetic configurations are formed in the Tübingen triangle and anti-Penrose til-

ings. Within the examples of tilings considered here, the Tie–Navette tiling represents

an exception. The magnetic structure observed for this tiling consists of two anti-

ferromagnetically aligned quasiperiodic sublattices, as shown in figure 2d. This

means that every pair of nearest neighbouring moments can be aligned antiparallel,

i.e. the antiferromagnetic configuration is not frustrated.

We have calculated the stable low-temperature configurations and the frequency

distribution of the exchange energy per atom hEi for the Tübingen triangle, anti-

Penrose, Penrose and Tie–Navette tilings. The calculations have been performed

for an exponentially decreasing exchange coupling and for a short-range exchange

coupling Jij ¼ const ¼ 1 for all rij � 1. The analysis of the local energies reveals

several characteristic energetic maxima in the frequency distributions shown in

figure 2a–d. The magnetic configurations and the number of the energy peaks for

Tübingen Triangle
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0

400

800

<E>/spin
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Navette

(a) (b)

(c) (d)
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0
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f

−6 −4
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0

200

400
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f

Figure 2. The frequency distribution of the energy per spin on the Tübingen triangle
(a), anti-Penrose (b), Penrose (c) and Tie–Navette (d) tilings for classical vector spins. A purely
antiferromagnetic interaction J at a temperature kT ¼ 0:01 J is considered. The insets in
(a)–(c) give the calculated Bragg scattering of the Sy component of the magnetization
for subtilings composed of magnetic moments belonging to peaks with �6 < hEi

spin
< �4.

The scale goes from �6 to 6 k
Sy
x, y=p. The inset in (d) shows a portion of the stable magnetic

configuration on the Tie–Navette tiling as described in the text. Dark and light grey arrows
denote antiparallel magnetic moments.
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the same tiling are identical for both choices of exchange couplings (Jij / e�rij and

Jij ¼ 1 for rij � 1). For different tilings, the number and the width of the maxima

are different. The simple existence of the peaks means that there exist different sorts

of magnetic moments having well-defined relative orientations with respect to their

nearest neighbours. These relative orientations depend on the tiling and not on the

choice of the exchange couplings Jij. For Jðrij � 1Þ ¼ 1, however, it can be seen

directly from the energy distributions of figure 2 whether the magnetic ordering is

collinear or non-collinear. If all nearest neighbours are collinear (parallel or anti-

parallel), then the exchange energy per spin should have integral values depending

only on the number of the neighbouring moments. This is indeed the case for the

Tie–Navette tiling; compare figure 2d. For a non-collinear alignment of neighbour-

ing magnetic moments, Eh i should be non-integral as the cosines of the angles

between the moments are no longer zero or unity. This happens for all other tilings

we considered; compare figure 2a–c. The average energy of non-collinear configura-

tions is smaller than the energy of any collinear solution. Hence, the increase of the

configurational entropy permits us to minimize the average local frustration and

the total energy of the system.

The spatial arrangements of the exchange energies of the magnetic moments are

given in figure 3. Each shade of grey in figure 3 represents a certain energy range

corresponding to one of the peaks in the spectra of figure 2. The magnetic moments

form subtilings of different energies, which generally do not coincide with a tiling

obtained by selecting a specific vertex type. The subtilings of low energy hEi
spin

< �3 are

magnetically stable and ordered while those of higher energy hEi
spin

> �3 are disor-

dered. The disorder can be seen in the portion of the magnetic configuration shown

at the bottom of figure 1. The two front moments belonging to the subtiling of

a large energy have angles which deviate considerably from those of the other

moments in the ring while the moments in the inner rings with lower energy have

collinear orientations. With increasing temperature the magnetization of subtilings

of large energy is fluctuating while the magnetization of low-energy subtilings is still

stable. The spatial quasiperiodic ten-fold symmetry of the ordered subtilings can be

seen from the calculated magnetic Bragg scattering given in the insets to figure 2.

While the atomic ordering of the unstable subtilings can be seen in the Fourier space

their magnetic reflexes are extinct because of disorder.

3. Summary

In conclusion, we demonstrate that a vector spin system with antiferromagnetic

coupling on different quasiperiodic tilings is locally frustrated. All spins can be

divided into several quasiperiodic (in our two-dimensional physical space) or

periodic (in the corresponding four-dimensional periodic hypercrystal) subtilings

of different energy, which generally do not coincide with a specific vertex type.

The vector spin system admits a three-dimensional non-collinear magnetic structure.

The non-collinearity of the magnetic configuration permits us to minimize the degree

of frustration and the total energy of the system in comparison with the collinear

case. The co-directional spins of every subtiling reveal quasiperiodic ordering with

a wavevector which is specific for a given subtiling. The Tie–Navette tiling is not
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frustrated and admits collinear magnetic configurations. For the short-ranged

exchange interaction, this arises as a consequence of the bipartiteness of the graph

formed by connecting interacting pairs of spins; however, we observe that the anti-

ferromagnetic order persists for the case of a long-range, exponentially decreasing

exchange interaction.
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