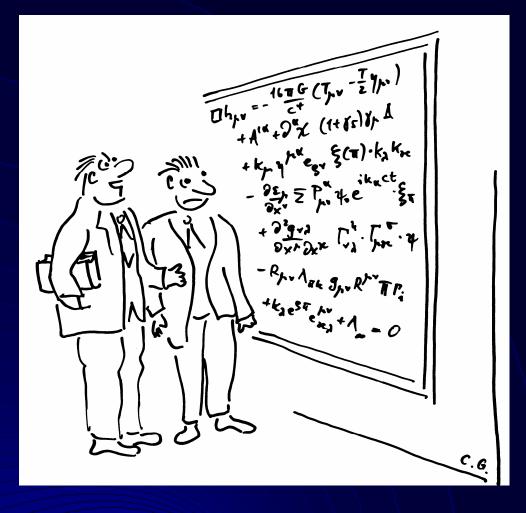


Stray field interaction: isotropic and anisotropic energy in 2D arrays of polarized nano particle

N. Mikuszeit, M.Á. Niño, J.J. de Miguel, and R. Miranda

Dpto. Fisica de la Materia Condensada, Universidad Autónoma de Madrid, Spain

Formulas



This is the simplified version of general relativity... for the students.

Well known facts

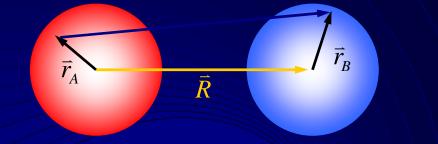
 Multipole expansion describes the potential at "large" distances from the source...

 \vec{R}

 \overline{R}

 $\vec{R} - \vec{r}_A + \vec{r}_B$

 ...and the interaction of sources separated by a distance "larger" than their diameter



"Well known" facts

 in Cartesian coordinates expansion complexity increases with increasing order

$$\frac{\vec{R} - \vec{r}_A + \vec{r}_B}{\vec{R} + \vec{r}_B} = \frac{\vec{R}}{R} \frac{\vec{r}_B - \vec{r}_A}{\vec{R}} = \frac{\vec{R}}{R} \frac{\vec{r}_A - \vec{r}_B}{\sqrt{1 + 2\vec{n} \frac{\vec{r}_A - \vec{r}_B}{R} + \frac{(\vec{r}_A - \vec{r}_B)^2}{R^2}}}$$

complexity is constant for spherical coordinates

$$\frac{1}{\left|\vec{R} - \vec{r}_{A} + \vec{r}_{B}\right|} = \sum_{l_{A}l_{B}m_{A}m_{B}} T_{l_{A}l_{B}m_{A}m_{B}}(\vec{R})R_{l_{A}m_{A}}(\vec{r}_{A})R_{l_{B}m_{B}}(\vec{r}_{B})$$

- many symmetric shapes have analytical solutions for their multipole moments¹
- a magnetic charge can be defined as

$$\rho = -\mu_0 \nabla \vec{M}, \, \sigma = \mu_0 \vec{n} \cdot \vec{M}$$

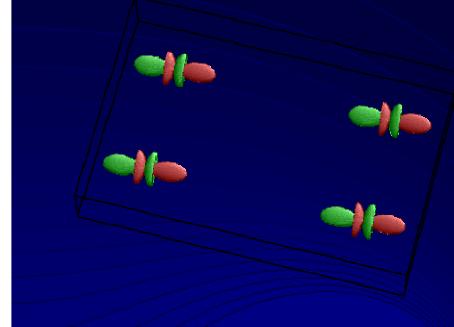
frame work of electrostatics sufficient for magnetism

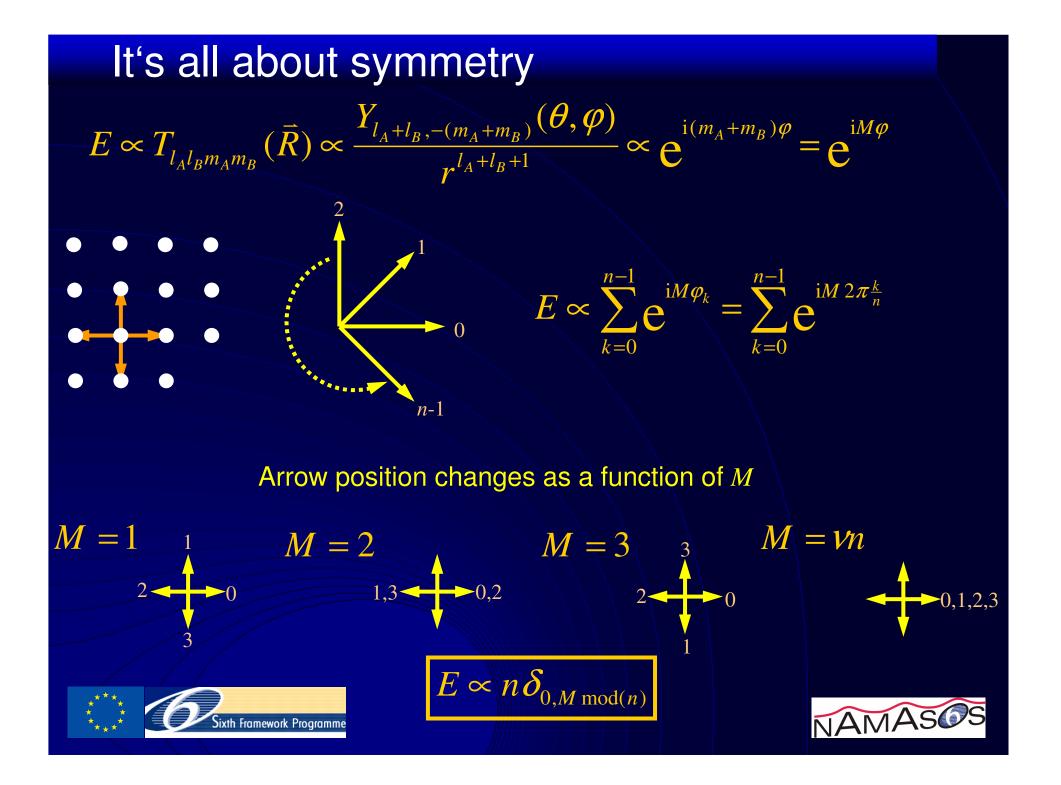
¹Mikuszeit, et al. J.Phys. C **16** (2004) 9037

J. Appl. Phys. 97 (2005)103107

2D lattices, in-plane coherent rotation

Polarplot $E = E(\varphi) - \overline{E_{\min}}$





Further symmetry properties

Under in-plane rotation multipole moments transform as

 $Q_{lm} \xrightarrow{\gamma} Q_{lm} e^{im\gamma}$

Therefore, the product in the interaction transforms propotional to

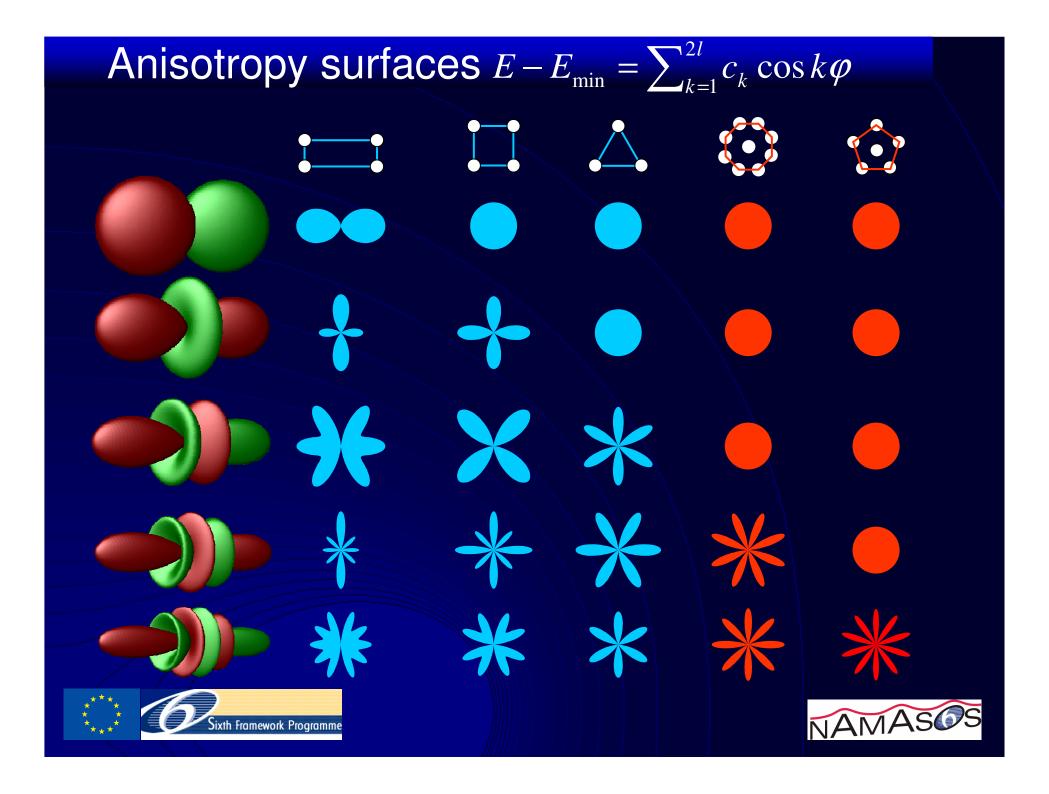
 $\propto e^{i(m_A+m_B)\gamma}$

- where we already know that $(m_A + m_B)$ has to be zero or a multiple of *n*. The energy than is proportion to

 $\propto \cos(m_A + m_B)\gamma$

where $(m_A + m_B) = 0$ gives rise to an isotropic energy, while $(m_A + m_B) = k n$ result in anisotropic terms

 These properties are even correct for quasi periodic structures with local "disorder", if the energy contribution due to "disorder" cancels to zero on the large scale



Summery

- Any interaction with *r*⁻¹ potential possible
 - electric (molecules, ferroelectic particles)
 - magnetic (nanomagnets, cluster, molecules)
- Symmetry of particles/molecules defines Q_{lm}
- Symmetry *n* of lattice defines c_k in $E = c_k \cos k \gamma$
 - k=0 or k=vn
 - $k \leq L = (l_A + l_B)$
 - on average true in quasi crystals
- Pair interaction and lattice sum are separated
- No energy due to interaction of odd and even order
 - neither isotropic
 - nor anisotropic

