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...lS important because? The Fourier Method® Some interesting properties of the

If periodic arrays of magnetic particles are From all possible definitions of the Fourier transform the following ' Fourier solution
used for data storage, a proper data read out is chosen

requires low signal to noise ratio i.e., it is
necessary to distinguish two adjacent dots.
In the case of completely parallel
magnetised dots this is equivalent to a

maximisation of the stray field

S a7 _ _ J‘ 7> 2rik-x which corresponds to the periodicity p of the array.
modulation. - . . d (f (£))(x) f (x) f (k)e dk In the far field the modulation decays exponentially® with
Modulated magnetic fields are interesting in

basic research e.g. magneto-transport®. The decay length p/2 w. Therefore, the periodicity defines a
transport prope.rti.es are modified, v;/hich The potential of a magnetic dipole m is of the form critical distance in applications, e.g. for effective storage

e . media readout.
leads t(.) a;ldmonal effects like Hofstad.ter m 1 m If z decreases to h the Fourier components diverge, as exp(-
butterflies®. The stronger the modulation d=-—

— V — and its 2D Fourier transform within a plane at distance z is 2 T k z) cannot compensate sinh(7 /4 k).
the better. A || 7 ”

Periodic arrays of magnetic particles may
also be used for periodic atom-traps in
quantum optics®.

o0 The Fourier components depend on the distance z.

F(f(x)(k)= f (k) = J. f( x)e‘” kx dx The larger z the smaller the influence of high order Fourier
; components. Consequently, the far field is determined by

the smallest Fourier component with the largest k-vector,

(k L ) i( kx m,_+ ky my) 6—2” H/; H'\Z\ Lf .tht;e c}jpoi;alis extlentclied t(;: ;l)lartlicle With
=— —  height & and lateral shape %, the Fourier .

dipole y% k o 2 trar%sform changes to P The SyStem to deal with...
o ...1s an infinite array of
0, particles. The z-component
In a periodic array the potential is then calculated by of the magnetic field is
9 sinh MHk H ~2aft})z| ,p the discrete inverse Fourier transform, where k), k, calculated at distance
) are the base vectors of the reciprocal lattice. From the extremal field

7T Hk H values H_. and H_. the

Three voluntary restrictions

The Fourier method allows any direction of
magnetisation. Out-of-plane  magnetisation
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later. In-plane magnetisation introduces an 2 zilk xtk . .
ad ditionalpsymmetr;;g breaking. This symmetry ~ e Filkocth,y The volume of the real space unit AH=H,-H_; 1s derived. 7
. Vs < Z q)particle (kx ’ ky ’ Z) cellis V. 255
. €L for discs or edgelength a
cases (o d.eal “.mh' . . k=nik; +nk, for squares and triangles)
As there is a rich variety of symmetries to treat
the z-component of the magnetic field is AH.
required, we restrict ourselves to perpendicular
component of the stray field. ...
The region of local extrema is not invesigated. 100 © s @ The field modulation as a function of Position of the extrema due to
case of the two fold trench orid with
p=10 nm). The larger ¢, the more
\\
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checkerboard pattern, the three fold checkerboard, the honeycomb and the Kagome lattice = ' ] For all symmetries shown below, the
Acknowledgements the maximum particle size r,,,, is also the ideal one 7. wt ] particle centre P, is a symmetry point. For
@ 50% is expected, but the more complex the symmetry, the @ even. Hence, there has to b_e at least a local
- . Lattice/ Sh LT LT extremum at P, (only in case of the
Almost all optimised lattces, the wo | StYONZeT the deviation from this value. The table also reveals attice/ Shape max. fill factor | opt. fill factor
h b lattice deviate fi h 1 1 1
' other withina fow percent. hexagonal lattice. The Kagome lattice should be seen as a Square/ Square 100% 41,1% This extremum is not necessarily the global
extremum. The same symmetry
Shift of the maximum from the
: : ‘\\‘)l‘ one disc L. . . . R 1 1
DlSCUSSCd geometl’lc of the optimised (continuous lines) lattices give the same | Checkerboard/Square 50% 50% symmetry point between particles. In Som_e
STreemeeeenneend . . S . cases, e.g. the checkerboard pattern, there is
1 . . . .
. lines) hexagonal lattice can be optimised by a factor of 3.4! Honeycomb 60.5% 60.5%
. square lattice ¢ [nm] ) g P Y O prom prom symmetry. The z-component of the

leads to the problem of local extrema, as shown ) ,
maximum modulation 1 (4
breaking drastically increases the number of The particle size (radius r
and in many applications a large modulation of is changed to maximise
magnetisation and the maximisation of the z-
S0t article size shows a maximum (left in .
~ e ( symmetry ‘fl’z . fl’ o
Literature [ ‘| narrow the maximum and consequently,
Klitzing, K. Eberl and H. Nickel, Phys Rev. Lett. 74, 0.1+
© T.J. Davis, J. Opt. B, 1, 408 (1999) @ The ideal particle size for a maximised field modulation is a function of { and the particle Schematic sketch of the system. The particles (hatched rectangles) are
Press, 1995) For h<p the influence of & mainly concerns the formation of local extrema. In case of the ~%
# ® Naturally, an ideal fill factor of particles in the array of ]"’ out-of-plane magnetisation this symmetry is
checkerboard patterns and the that the Honeycomb lattice is almost the inverse optimised Hexagonal/Disc 90.7% 39.8% Kagome lattice a saddle point can form)
lattice of holes (anti-dot) as well. Hexagonal/Triangle 100% 44.8% - : ;
w, coneotiecdicotecene - @ The four fold and three fold checkerboard as well as most Square/Disc 78.5% 46.0% considerations are frue for P’y the
. : modulation. The modulation of the non optimised (dashed | Checkerboard/Triangle 50% 50% i . .
patterns The simple ¢ 8 10 P ( an additional symmetry point P, with odd
with disc Solution for all geometries magnetic field must cross zero at this point.

shaped with optimised pgi‘}'ticlne size
particles
HEB
The simple square gy I [l / . / ) Ty ...50 keep in mind that...
lattice with square The smallest (is specified by limiting technical factors. This defines, due the position of the olobal extrema of the
shaped particles, which to th tial d f th dulati itical mini iod post™ £ s
o the exponential decay of the modulation, a critical minimum period p magnetic field (z-component) within a plane,

could also be ‘ of the array. The checkerboard symmetries always give the best coplanar to the array, is not always intuitive and it

interpreted as a two . . . . e . . . .
fold l[rench orid modulation, but other geometries with optimised particle size are may change as a function of distance to the array,
o ‘ comparable. e.g. in the Kagome lattice of Co particles.

The checkerboard pattern By choosing the correct particle size a strong h=5A, d=10 nm
increase in modulation can be gained!

‘ ‘ ‘ The three fold checkerboard pattern, For a distance {(=2.5 A the centre of
which is the hexagonal lattice with the discs shows a local minimum

A A triangles, above the missing discs a local
maximum is observed. The global

the classical hexagonal (p3) lattice with discs, Below Wthh dlStance local extrema form? extrema are at the edges of the discs.

10
v The hexagonal (p6), lets call it the s In case of the checkerboard pattern the
‘ ‘ three fold trench grid, local extrema form if ¢ is approximately
17% of the period p. That is

AVAVA g | appeo '
- approximately 25% of the edge length a of

v‘v‘v 00051; locﬁeeiit(r):rg o "1 the square shaped particles. In case of the For ¢=3 nm the gl.obal maxima are E}bf)Ve
7, " Kacome lattice one has approximately the centre of the discs, the global minima

-1-00 JIp=10%. are above the missing discs.

the honeycomb
lattice and e Region of
The local minimum above a particle '
(diameter d, edge length a=d/\2) also
forms for a single particle and it turns out ;/h
that it is only slightly modified extending o Region of ™"
the system to an array. A rule of thumb local extrema i

the Kagome lattice

All shown symmetries are scaled to have the same
period p, marked by the black arrows. Hence, all
symmetries have the same decay length in the far field
refglml? . Ap‘artlfro.m the Kagolrlne lattice, v&./hlch 1s moref can be: Local minima form if ¢ is less 0.
of theoretical interest, all symmetries are o than 25% of the particle diameter.

technological interest, either due to the fact that the . o i For {=10 nm the global maxima shifted
symmetry is simple or they are very easy to produce, In case of normal memory read out the formation of local extrema, including above the centre of three adjacent discs.

e.c. the three fold trench grid by etching or the high frequency components, should be avoided, as the global extrema have a Above the discs a saddle point has
honeycomb lattice by self organisation penodlclty different from p. In case of read out in terms of edge detection it formed.
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